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Abstract.TheBecchi-Rouet-Storarelationsandthecohomologicalconstructionof
anomaliesof gaugefields aredescribedwithin the theoryof principal connections
of smoothvectorbundles.

INTRODUCTION

This paperprovidesa detailed introduction to the differential geometricand

and cohomologicalframework underlyingBRS transformationsandanomaliesof
gaugefields.These‘items both appearedin the studyof perturbativerenormaliza-

tion of gaugefields — renormalizationbeing requiredto yield in particularphysi-
cal answersindependentof the choice of gauge[3]. The vanishingof anomalies
thus appearsas a criterion for the relevanceof fundamentalfield theories(1).

Howeveranomaliesplay also a positive role in a differentcontext,that of pheno-

menologicaltheoriesfor the searchof which they provide a meansof writing
((effective lagrangians>>.It is in this contextthat anomalieswere first found lii].
Though they arose in a quantum(field theory) context, BRS transformations

and anomalies ultimately appear as purely classical (differential geometric)
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(1) See,however,[10] where it is suggestedthat gaugetheorieswith anomaliesmay have
a consistentinterpretationat thenon-perturbativelevel.
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objects,which can be isolated assuch from the original quantumcontext — this

is what we do in the presentpaper.In fact the anomaliesthemselves— and the

algorithmswhich are useful for their description— are elementsof certainvector
valued Lie algebra cohomologiesrelated to the ambient Yang-Mills principal
bundle. This fact was realized following the discovery of the Wess-Zumino.

compatibility condition, which in fact characterizes1-cocyclesof thecohomology

of the Lie algebra of the gaugegroup with values<(local)> functionalsof the
potentials(connectionone-forms).

Our paper comprisessevensections,amongstwhich sections 1, 2, 3 and 5

describe prerequisitesto the actual subjectmatter in sections4, 6 and 7. We

included these prerequisitesin order to be complete,and also becauseof the
necessityof fixing notation. Section 1 describethe De Rhamcomplex A* of a

principal bundle P with valuesin the symmetric tensorson the Lie algebra L

of the structuregroup G, and definesthe commutingactions,on this De Rham
complex,of G and of the gaugegroup ~‘. Section 2 describesthe subcomplex

A* of fixpoints of the action of G (i.e. Ad-equivariantelementof A*). Section
3 describesthe cohomologyalgebra of the Lie algebra2 of the gaugegroup.
After theseprerequisites,Section4 describesthe cohomologyof 2 with values

in A*, with the ensuingdouble complexand differential algebrastructures.This
furnishesthe frameworkof the BRS relations,to which section 5 is devoted,as
well as a framework for the constructionof anomalies,describedin section 7.
The cohomology algebra of 2 with values in local functionalsof connection

one-forms— the receptablefor anomalies— in definedin section6.
This expositorypaperleavesasideimportantaspectsto which we shall return

later, e.g.
(i) The additional analytical apparatusarising from the fact, realized in

physics, that the structure group G is a linear group (a group of matrices—

its Lie algebraL consistingthen also of matrices).We herelook at G asa general
Lie group,in the spirit of thegeneraltheoryof smoothprincipalbundle.

(ii) The Chevalleycohomologyof the gaugegroup Lie algebra2 with values
in the local functionalsof the potentials(resp.,in a S(L)-valuedDe Rhamcom-

plex) has a version utilizing equivariantdifferential forms on the gaugegroup
~ himself, with the operatorsstemming from the exterior derivative of ~

(iii) The homotopyformula shouldbe generalizedin two respects:one can
avoid the assumptionof triviality of the principal bundle at handby introducing

a backgroundfield. On the otherhand,it is useful to considermultidimensional
generalizationsof <<transgression>>involving morethanonepotential.This necessi-
tatesthe replacementof S(L) by an algebraof <<gradedsymmetric>> forms.

§ 1. THE GAUGEGROUP ~ OF A SMOOTH PRINCIPAL BUNDLE
P = (P* -~ M, G). ACTIONS OF G AND ~ ON THE REAL AND VECTOR-
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-VALUED DE RHAM ALGEBRAS (A* (P.F.), d, ), (A*(P, S(L)), d, x), AND

(A*(P,L).d,[.1)

Our basic object in this paperis a smoothprincipalbundle P : P’~-÷M, with
basisM and(compact)structuralLie group G. We shall denoteL the Lie algebra

of G, and write [u, v] for the Lie bracketof u, u E L. We denoteby R the right

actionof G on F:

(1.1) R5z=zs, s~G, zEP.

[1.1] The gaugegroup~ andits Lie algebra2’

The gaugegroup ~ is the groupof automorphismsof Pinducingtheidentity
on M. Specifically ~ consistsof the diffeomorphisms:P -+ P commutingwith
all R5, SE G, and mapping each fiber into itself. Since ‘I’ actson the fiber, we

have

(1.2) ‘I’(z)=zg(z), zEP,

whereg is a smoothmap:P-÷G, ad-equivariantin the sense

(1.3) g(zs)= Ads
1(g(z)) = s~1g(z)s, zE F, sE G,

this expressingcommutativity of ‘I’ andR
5. Relation(1.2) in fact establishesa

bijection betweenthe elements‘I’ of ~ and the smoothad-equivariantmaps
g : P-+ G, whereby products and inverses in ~ are turned into pointwise

products,resp.inverse:

‘I’ .~+g ‘I’~ +s.g~ , g
1(z) =g(z~’

(1.4) — , zEP.

‘I”.e-g~ ‘~I”+s.gg’ , (gg’)(z)=g(z)g’(z)

~ is an <<infinite dimensionalLie group>> (a diffeologicalgroup in the senseof
Souriau [13]). As such it possessesa Lie algebrawhich we denote.2’. We can
view .2’ asthe set of smoothmaps~Z: P -+ L. Ad-equivariantin the sense:

(1.5) ~2(zs)= Ad s~‘(~(z))= <<s ‘~(z)s,~ SE G

(hereAds is the tangentmap of ads= s •s’ at the unit of G). Lie bracketand

exponentialarethenobtainedpointwise:

(1.6) [~2,~‘l’](z) = [&2(z), ~2(z’)], ~2,~2’E 2, zEP

(left handside bracketin 2, right handsidebracketin L),

(1.7) e~(z)=e~~, ~9E2, zEP.

Setting, for i~iE ~ (~2)(z)=~(ir(z))&2(z), ~2E 2’, zEP, we thusobtain
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an action of ~‘ °~(M)on 2’ commutingwith Lie-brackets;thus .2’is a Lie algebra
over’,f~(M).

[1.2]. The (real valued) De Rliam complex (A*(P,R),d, -) asa GCDA. Action
of the Lie algebra 9t(P) on A*(P, F.). Representationof G and f~on A*(P, F.)

We write A*(P, F.) = o AP(P, F.), with A*(P, F.) the set of smoothreal-valued

differential p-forms on P. Denotingby 91 (F) the Lie algebraof smoothvector
fields on F, we canview A*(P, F.) asthe set of %‘~(P)-valued,alternate‘e~°(P)-

-linear p-forms on 91 (F) (%‘~(P) = A0(P, F.)). The wedgeproduct -, exterior
derivative d Lie derivative L (~)along ~E 91’ (F) and inner product i(s) by ~E

E 91(P), are then definedas follows: for ~, ~ E 91(P), a E A*(P, F.),

13 E A*(P, F.) we have

(1.8) (a-f3)(~
1,...,

= —~ —i- E x(o)a(E0 ~ ~ 1)’ ‘~a(p+q)~
P• q.

(1.9) (da)(~0,... y—[(_ lY~’{a(~1.,~.

+ [ (— lY~’a([~1,~.,1, ~-•-~ ~,,..., ~
0(i</~p

(1.10) {L(E)a}(~,..., ~..)=.~(a(~l

_~ a(~,. . , ~i—1’ ~ ~ ~i+ 1’~~~’

(i(~)a) (~~ ~,, ~)= a(~,~, . - ~— l~

(1.11)

i(~)=0 on A°(P,F.).

Through definitions (1.8), (1.9) (A*(P, F.), d, -) now becomes a GCDA. And
definitions (1.10) and (1.11) determinean action (L, 1) of the Lie algebra 91(P)

on this GCDA. For a proofof thesewell known facts werefere.g.to [1], Corol-

lary [10].
In addition to the previousstructuretheDe RhamcomplexA*(P, F.) is both

a G-spaceand a f’-space. We obtain the action of s E G on A*(P, F.) as r(s) =

= R,~’, where R,*a denotesthe pull back of the differential form a by R5,
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specifically (2):

(1.12) {r(s)a}(z,Z1) = a(zs,R,*gZj)~ ZEP, Z1 E T~.

In this way G is represented in the zero grade automorphismsof the GCDA
(A*(P, F.), d, -) (indeedr(s), sE G, commuteswith d and with the wedge pro-

duct).The correspondingrepresentationof L:

d
(1.13) O(u)= —~ R~, uEL,

dt ~=o

thenarisesas thecomposition

(1.14) O(u)=L(~’), UEL,

with~U theprincipal field

(1.15) ~=Lz*eU, uEL,

(hereL5, z E F, is themap: G -+ P determinedby

(1.16) L~s=zs(=R3z), zEP, seG.

From this and the convention

(1.17) i(u)=i(r), UEL,

wegetan action (0, i) of the Lie algebra L on A*(P, F.).
We now describethe representationp of ~ on A*(P, F.): for ‘I’ E ~, p(

4’)
is obtainedby pulling backthe(inverseactionof f~(3)

(1.18) p(’4’)a = ~I1_l*a, ‘I’E ~, aE A*(P, F.),

specifically we have(4)

(l.l8a) {p(~I’)a}(z,Z
1)= a(’I’’(z), (‘I’’)~5Z1), z EP, Z1 E

We shall alsodenotep theaccompanyingrepresentationof 2’:

d
(1.19) p(fZ)= —~ p(etO), flE2’.

dt

(2) Since both the right actionand thepull backareproduct-inverting,we obtain indeed
arepresentations-~ R~*of Gon A(P, lR). For adefinition in termsof sectionsare [1.5] below.

(3) Since~ actson Pon the left, we now haveto pull backthe inverseof ‘I’.

(4) For a definition in termsof sections,see[1,5] below.
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Specifically,onehas,for ‘I’ = et~

(1.20) (‘I’ 1) = (Re_tfl(z~*Z — t(Lze_tS~l(z))*ed&
2(Z, . )

~ (resp. 2) are thereby representedin the zero grade automorphisms(resp.

derivativescommutingwith d) of the GCDA (A*(P, F.), d, -) (immediateconse-

quenceof the commutativity of the pull back(1.18) with d and with thewedge

product). Furthermore, since ‘I’ E ~ commuteswith R,, SE G, therepresenta-

tions of G and ~ on A*(F, F.) commute.

So much about real-valued differential forms on P. We now describe the

differential forms on P with valuesin L, or more generallyin symmetrictensors

overL.

[1.3]. The S(L)-valued De Rham complex (A*(P, S(L)), d, x) as GCDA. Re-
presentationsof G and ~ on A*(P, S(L))

We denoteby S(L) thesymmetricalgebraoverL:

S(L)= ~ S,~(L)
kEIN

(1.21)

Sk(L)= LU/C = SkL, S
0(L)= JR

equippedwith thesymmetricproduct

(l.21a) f.-f’ = S~~1(~pnp’), fESk(L),f’ ESJ(L).

Here S/C, k> 0 the idempotentprojectingLU/C onto thesymmetrictensors— vani-
shing on the f nf’ — (~ l)~‘f’ n f, i, / E IN, i + / = k. And S0= idL. Note that

the dual S~’(L)can be identified with the set of symmetric k-linear forms P
on L (5) by writing

(1.22) F(u1 u/C)=P(u1- . . . _uk), u5 U/CEL.

A subsetof S~’(L)of particular interestis the subsetIk(L) of Ad-invariantsym-

metric k-forms characterizedby

(1.23) P(Ads(u1) AdS(U/C))=P(U1,..., U/C), sEG,u1, UkEL

or equivalently

(l.23a) F(u ~ u~_~, [u, u1], u~~ uk) = 0, U, U1, U/C EL.

(5) The latterarein turn one-to-onewith thepolynomialsof orderkon L, thepassagefrom
k-forms to polynomialsarising by restrictionto the diagonal,andinversely by polarization.
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Now we considertheS(L)-valuedDeRhamcomplexofF:

(1.24) A*(P, S(L)) = o AP(P,S(L))
p

with AP(F, S(L)) the set of S(L)-valuedsmoothdifferential forms on F, alterna-
tively

(1.25) AP(P,S(L)) = S(L)nAP(P, ~R)

with the identification

r =fna.rs’ (r(~ , ~,) = a(~1,..., ~f, for all ,...,

(1 .25a)

rEA~(P,S(L)), aEL\~(P,lR), fES(L).

Of courseAP(P,S(L)) decomposesinto <<homogeneouscomponents>>(6):

AP(P, S(L))= ~ A~(P,S(L))
kEIN

(1.26)
A~(P,S(L)) = AP(P, S/C(L)) = A~(P,F.) n S/C(L)

the term k = 0 arisingfrom our conventionS0(L) = F.,which implies

(1.27) A~(P,S(L)) = AP(P,F.)

(incorporatingin this way the real valued De Rhamcomplex hasa convenient

unifying virtue).
On A*(P, S(L)) we now define(7)

— a bilinear productx by requiring

a, a’ E A(P, F.)

(1.28) (fna) x (f’n a’) = (f—f’) n(a a’),

f,f’ES(L)

— operators,d, i(u) 0(u), u E L as follows:

(1.29) d=ids(L)ød

(6) We accordinglywrite A(P,5(L)) = eA~(F,5(L)).

(7) Note that thesedefinitions extendd, i(u) and p(’4’) by requiring them to be trivial
on 5(L)= 5(L) ® 1, 1 the unit function on F. In contrast0(u) andr(s) areobtainedfrom
tensorizingwith the adjoint representation.This will result in adeparturefrom a ~Ue action
situation~,see(ii) below.
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(1.30) i(u) = ids(L) ® i(u)

(1 .31) 0(u) = ids(L)® 0(u) + Ad u ® id~ ~

(with the following definitionof Ad u on S(L)

~

(1.32)
ul,...,UkEL

— actionsr and p of G, resp. .~, as follows:

(1.33) r(s)=Ads®R3*, sEG

(with the following definition of Ad s on S(L):

Ads(u1)—...- Ads(uk), u1,...,UkEL)

(1.34) Ads(u1— ...

Ad s = id on S0(L)

(1.35) p(W) = idS(L)npUT’)

the latteryieldingas usual

d
(1.36) p(~Z)=— p(e~), ~7E2’.

dt

We note that thesedefinitionsreduceon A~(P,S(L))to our former definitions

(1.8), (1.9), (1.13), (1.17), (1 .12) and (1.18), in accordancewith embedding
(1.27).

The foregoingdefinitionsnow imply thefollowing:
(i) A*(P, S(L)), d, x) is a GCDA whose sub-GCDA (A~(P,5(L), d, x) is

isomorphic with (A*(P, F.), d, -).

(ii) The pair (0, i) behavesas an action of 91(P) on this GCDA,but for the
fact that onehas(8)

(1.37) i(u)d + di(u) = ids(L) 00(u), (= 0(u) — Ad u n id~ ~ U E L.

(8) In other terms, with the replacementa_÷A*(F,S(L)), the product - -+ the product x,

onehasproperties(Al) through(A.l6) in Appendix A exceptproperty(A.14) to bereplaced
by (1.37).
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(iii) r as defined in (1.33) is a representationof G on A*(P, 5(L)) by zero-

-grade automorphismsof the latter as a GCDAmoreover such that theaccompa-
nyingrepresentationofL coincideswith 0 (9):

d
(1.38) —~ r(eW)=0(u), uEL

dt

(iv) p as defined in (1.35) (resp. (1.36)) is a representationof (5 (resp..2’)

on A*(P, S(L)) by zero grade automorphisms of the latter as a GCDA(resp.

by derivations of (A*(F, S(L)), -) commuting with d)
(v) The representations rand p commute (10):

(1.39) p(’4’)r(s) = r(s) p(”I’), SEG, ‘I’ E (5,

accordingly

(1.40) p(f.Z)0(u)=0(u)p(~7), uEL, ~ZE2.

Thesefactsare classical.For aproofof (i) we refer to, e.g. [1 , Theorem 1.8] with
the replacementL-+ 91(P), A -+ c~’~(F),V-÷S(L)®‘~‘~(P),p(~)_*ids(L)®E,

d~-+d, . -+ x. The proof of (ii) is as follows: denote01(u), resp.02(u) the first,

resp. secondterm r.h.s. of (1 .31): (0k, i) is a bona fide action of the Lie algebra
L on the GCDA A*(P, S(F)),obtainedby tensoringby ids(L) the action (0, i) of
L on A*(P, F.).We examinethe changesin (A.9), (A.l2) through(A.16) brought
about by the change01 -~ 01 + 02. Since 02(u) is a zero gradederivation,(A.9)

stays unchanged.Since 01, and 02 are mutually commuting representationof

the Lie algebraL, (A.l2) is maintained.
We check (A. 13), from which (A. 16) follows: we have, from (1.30), (1.31)

(1.41) 0(u)i(v) — i(v)0(u) = ids(L)®{(0l(u) i(v) — i(v)0(u)} =

= ids(L) ®i([u, vJ) = i([u, u]).

We examine(A.l4): wehave,from (1.21),(1.30):

(1.42) i(u)d +di(u)= ids(L)® (i(u)d + di(u))=

=idS(L)®O(u).

Finally we havefrom (1 .29), (1 .31)

(9) Coherent with the fact that the 0(u) are derivationscommutingwith d (cf. A.13)
and(A.l5).

(10) We could thusconsiderG x (5 ~ (s,~Jj)-+ r(s) p(’I’) as a representationof the direct
productof thegroupsG and(5.
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(1.43) dO(u)—0(u)d=ids(L)®(dO(u)—O(u)d)= 0

hence(A.15) staysunchanged.

Remark. Defining L(~) andi(~),~E 91(P) on A*(P, 5(L)) as

(1.44) L(~) = ids(L) ®L(~)

(1.45) i(s)= ids(L)zi(E)

we get an action of the Lie algebra 91’ (M) on the GCDA A*(P, 5(L)) yielding

theaboveaction~ i) by compositionwith ~ in (1.15).

[1.4]. Our next concern is the <<descent>> from Sk(L)-valued to real differential

forms by meansof elementsof S~(L).Considera <<polynomial>> PES(L) of

orderk: taking its covaluewith ap-form r E A~’(P,5(L)):

(1.46) P(r) (~ ~~,)(z)= P(r(~,...,~,)(z)), ~ ~,E 91(P), z EP

(in otherterms:

(l.46a) P(fna)=P(f)a, aEA~(P,JR), fESk(L))

one gets an elementof AP(P,F.). We can thus view the dual S~’(L)of Sk(L) as

providing linear maps

(1.47) P : AP~(P,5(L)) —J r —~P(r) E AP~(P,F.),

with theproperties

(1.48) Pod=doP

(1.49) Poi(U)=i(U)oF, uEL

(1.50) Por(s)= r(s)oPo Ads, SE G.

Proof (1.48), (1.49) follow from (1.46), (1.29),(1.30):

(1.51) Pod(fna)=P(fnda)P(f)da

= d(P(f)a)= doP(foa)

(1.52) Po i(u)(fna) = P(f® i(u)a) = P(f)i(u)a =

= i(u)(P(f)a) = i(u) o P(fo a)

On theother hand,(1.50) follows from (1.33), (1.46) (cf. (1.23))
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(1.53) Fe r(s)(f®a) = P(Ads(f)eR~1’a)=

=P(Ads(f)) oR~a=

=R
3~F(Ads(f)) a=

= r(s)(Po Ads)(fsnd).

The 1 -tensor part A*(P, L) of A*(P, 5(L)) deservesa special examination,
since it inherits from the Lie bracket of L a graded Lie algebrastructure(essen-
tial for expressingtheBRS relations).

[1.5]. The L-valuedDe Rhamcomplex(A*(P, L), d, [1) asa DGL

Recallingthe identification

Aç(P,5(L)) = A~(F, L) = L ® AP(F, F.)

(1.54) X= u na~A(~1,.. . ,~)=a(~1,. . . ,~,)u

XE AP(P, L), a E AP(P,F.), ~ E 91(P)

we define as follows the Schoutenproduct [] on A*(P, L): for A E AP(F, L),

pEA~(F,L),p, qEIN, ~ ~p+qEL weset

(1.55)

11
= —i- —i- ~ x(a)[A(~1, - ~~ap~’ ‘~~o(p+ 1 ‘~a(p+ q))l~ q.

where[ , I s.h.s.denotesa Lie bracketin L. Alternativespecification:

a,j’3EA*(P,IR)

(1.55a) [una-v~f3]=[u,u]n(a-~3),

u,v,EL

With this definition, we have that (A*(P, L), d, [-]) is a DGL. Moreover r, resp.

p. restricted to A*(F, L) are commutingrepresentationsof the group G, resp.

‘5, by zero-grade automorphismsof (A*(P, L), d, []). Correlatively, 0, resp.,

p are commutingrepresentationsof the Lie algebras L, resp. 2 by zero grade
derivations of (A*, []) commutingwith d. Thesefacts are classical.A proof
of the DGL property of (A*(P, L), d, [-]) can be inferred from [1, Theorem
1.8] with the replacementL-+91(P), A-÷~’~(P),V-~i9~(P)®L,p(~)=~®
nidL, d~—*d, —~ [-]. We know from the precedingparagraphthat r(s) and

p~’), s E G, ‘1’ E (5,commutewith d. Moreover(1.48a)showsthat they commu-
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te with the Schoutenproduct: indeed we saw that R and p(W) acting on

A*(P, F.) commutewith the wedge product. And Ad s commuteswith the Lie

bracketof L:

(1.56) [Ad s(u),Ad s(v)] = Ad s([u, v]), sE G, u, vEL.

[1.6]. ThegroupsG and ‘5asactingon sections

We mentionedthat A*(P, F.) can be consideredas the set of ~‘°°(P)-valued,

alternate, <~°(P)-linearp-forms on 91(P) and formulatedthe definitions(1.8)
through (1 .11) and (1 .14), (1 .17) in this context.We heregive for completeness

the correspondingdefinitions of the representationsr and p. Letting G and

‘5 act on 91(P) (11)as follows:

(1.57) {r(s)~}~= (R5)1~1, sE G

(1.58) {peP)~}5=(‘~-‘‘)*W(~)~W(5) ‘I’ E’5

the definitions (1.33), (1.35) are alternatively phrasedas follows: one has, for

r E AP(P, 5(L))

(1 .33a) r(s)r (~, ~ = Ad s(r(r(s)~ i,..., r(s)~)oR5), SE G

(l.35a) (p(W)r)(~~ ~) = r(p(’I’)~, - . . , p(4’)~,)o ‘I’’). ‘I’ E’5

It then follows from

(1.59) r(s)~0=~ 1 UEL, 5EG
Ads (u)

that onehas

(1.60) r(s)i(u) = i(Ad s(u))r(s), u EL, s E G.

§2. THE DIFFERENTIAL SUBALGEBRAS. (A*, d, -), (As,d, x) AND

(Ar, d, [-]) OF REAL INVARIANT, RESP. S(L) AND L-VALUED AD-
-EQUIVARIANT DIFFERENTIAL FORMS

The fixed point set, for the action of G, of the differential algebrasof the
last sections, are differential subalgebrasof direct relevance for gauge-field

theory.We devotethis sectionto their description.

[2.1]. The GCDA (A*, d, x) of Ad-equivariant elementsof A*(P, S(L))

We saythat r E A*(P, 5(L)) is Ad-equivariantwheneveronehas

(11) Ontheright.
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R’r=Ads~r forall 5EG

(2.1)

i.e. r(zs,Rg*zZj)= Ads~r(z,Z,), 5EG, zEP, Z,E Ti”.

This is tantamount to requiring that

(2.la) r(s)r=r forall 5EG

(cf. 1 .33), or else, if G is connected (12)

(2.lb) 0(u)r=0 forall uEL.

Note that, since Ad acts trivially on the zero degree part A(~’(P, S(L)) = A*(P, F.),
condition (2.1) restricted to the latter simply meansin variance of the real valued

form aEA*(P, F.):

R’a=a forall 5EG

(2.1 a)

i.e. a(zs,Rg*5Z1)=a(z,Zj), zEP, Z1E1~,5EG.

We denote by A* (resp. A~,A,~’,A~,p, k E t4) the respective subsets of Ad-

equivariant forms in A*(P, S(L)) (resp. in AP(P, 5(L)), A*(P,
5k~~’

AP(P, 5k~1~~

Since the r(s), 5 E G, are zero-grade automorphisms of the GCDA
(A*(P, L), d, x) commuting with all p(’I’), ‘I’ E,(5, and leaving the degree k

invariant, we have that A* decomposesas

(2.1) A*=OAP=OA*= @ A”p k p,k k

and is a sub-GCDA of (A*(P, 5(L)), d, x) stable under the action p of (5 thus
also of 2 (as well as every componentof A~)andcontainingA~asa sub-GCDA
isomorphicto the GCDA (A*(P, F.), d, -).

We note that Ad-invariance allows to simplify the explicit expressionof

p(~T’).First note that, due to (1.35),p(~4’)ris given for rEA~(P,S(L)) by the

samealgorithm as for a realvalueddifferential from (cf. 1 .13a):

(2.3) (p(’T’)X)(z, Z
1) = X(’I’’(z), (‘I’’)~5Z,), zEF, Z~E Ti”

with ~ given by (1.20) for ‘1’ = etn, ~ZE .2’. Plugging(1.20) in (2.3) and

(12) Generally(2.lb) amountsto requiring (2.la) for all s E G within the connectedcorn-

ponentof theidentity.
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using the Ad-equivarianceproperty (2.1) now yields the following explicit form

of p(~2)onA*:

(p(er~)r)(z, Z
1) =

(2.4) = Ad et~~(r(z,Z, — t(Lz)*eAde~t~(d~(z,Z)))

TEA*, fZE2’, zEP, Z~E7~

leadingto

(p(&2)r)(z,Z1,..., Z,,)=[~(z),r(z,Z1,..., Z)]_

(2.5) —~ r(z, Z1, .. ., Z~_1,(Lz)*ed~(Z~Z~),~ ~ Z~)

TEA*, fZE2, zEP, Z~E7~

(for TEA0 one should set Ad etu = id in (2.4) and omit the first term r.h.s

of (2.5)).Note that (2.4) reducesto

(p(e
t~r)) (z, Z.) = Ad er’~~(r(z,Z~))

(2.4b)

TEhA*, ~ZE2, zEP, Z
1E7~

on the subsethA * C A * of horizontal Ad-equivariantdifferential forms,singled

outas

hA*= n hA~
p,k k

(2.6)
hAkP= (rEA~ i(u)r= 0 for all uEL)

(equivalently, the Ad-equivariant T E A* is horizontal wheneverit vanishesas

soon asone of its argumentsis vertical i.e. tangentto the fiber). hA* is a graded
commutativesubalgebraof A* preservedby the action of ‘5 as follows from

(2.4b). Warning:A* is not a sub-GCDAof A*, sincenotstableunder theexterior
derivatived. However

12.21. The set hAs’ of real valued horizontal G-invariant differential forms
is a sub-GCDA of (At, d, -) stable under the action of ‘5 and isomorphic as
a GCDA to the real-valued De Rham complex A*(M, F.), d, -) on the base.
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We recallthat the isomorphisni is givenas follows (13)

hEA~-Da*+a’EA”(M, F.)

a’ -+ cx =

(2.7)
a -+ a’ : a’(x, X1) = a(z, Z1)

(any zE F and Z, E T~~’with ir(z) = x, ir~Z= X,)

The fact that hA0 is a sub-GCDA of A0 is seenas follows: rememberingthat

(0, i) is an action of the Lie algebraL on A*(P, F.), A0 = uEL ker u is closed

for the wedge product dueto the derivation propertyof i(u), u EL; andclosed
for d, because,for aE A°(cf. AppendixA, (A.14)) i(u)da = — di(u)a + 0(u)a=

= 0.

[2.3]. The DGL (A~’,d, []) of Ad-equivariant L-valued differential forms

Sincether(s),5 E G, arezero-gradeautomorphismsoftheDGL(A*(P, L), d, [])

commuting with all p(’T’), ‘I’ E’5, we have that A1 is a sub-DGL of
(A*(P, L), d, []) stable under the action p of ‘5 (thus also of.2’) (14). The
importanceof A1 lies in the fact that it containsassubsetboth 2 and the set

A of connection one-forms on P. Our identification of 2 with the smooth

Ad-equivariant functionson P(cf. (1.5)) is now expressedas

(2.8) 2=A~.

We recall, on the other hand, that the set A of connectionone-formson P is

the subset of a EA~singled out by the following specification of the value

of a on verticalvectors:

(2.9) a(z, Z) = L~’eZ, Z E F, Z E T5” with 7r~Z= 0

alternatively

(2.9a) a(z,0(u))= u, uEL.

We recall that A is an affine subspaceof A,’ modelledon hA,’ (15). Thecurvature

(13) One has dc~+~ dcl’ and ~ - a’1 a’1 becausethe pull back ~ commuteswith d
andwith thewedgeproduct.

(14) Note howeverthatthereplacementof (A.14) by (137)preventhA1’~!’= (r E A~~’;i(u)r =

= 0 for all u EL) — hencein particularhA — to be stableunderd: hA~ is merelyclosed
for theproduct[](and hA* for theproduct x).

(15) i.e.a,a’ca,X,X’elR,X+X’=l implyXa+X’a’=a;anda’—aEa.
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ofa is

(2.10) F°=da+ —[a -a],
2

it is an elementof A ~. The exterior covariant derivation determinedby a is the

mapD’~:Aj” -+A~’givenby(16)

(2.11) DaX=dX+[a,X], XEAI’.

We state for further reference the expressionof (2.5) for r = a E A and r =

=f~’E :wehave

(2.12) p(~2)a=—[a - ~2]—d~, ~2E2, aEA

(wherewe used(2.9)) and

(2.13) p(&2)~’= ~ - f2’], ~2,~‘ E 2.

We end up this sectionwith a remark on the <<descent>>by meansof the FE

E S*(L) (cf. [1,4]): using (1.47) we see that, if F is Ad-equivariant, i.e. if ~D

- Ads = P, sE G, P commuteswith r(s),5 E G: for FE I,~(S)we have

(2.14) For(s) = r(s) oP

henceP leavesA * invariant.

§3. THECOHOMOLOGYALGEBRA(~*, ö, )0F2

Constructingthe cohomologyalgebraof a Lie algebrais a standardprocedure
which can be applied to any Lie algebraoveran arbitrary abelianring. We now

describethis construction in the casewhere we needit: that of the Lie algebra

2, takena Lie algebra over ~‘~(M). We noted in [1.1] that 2= A1°is a Lie

algebra over ~‘ ~(M) acting by pointwise multiplication — abstractlythe multi-
plication of elementsof A ~ by thoseof A0

0, with the following identification of
~ with A

0
0:

a’(z) = a(-,rz), z EP

(3.1) ‘~~‘~(M)~a=a’EA
0

0iff

i.e. a’(x)=a(z), zEP, irz=x

We now considerthe directsum

(16) Unlike d,D~,a E a,leaveshA
1 stable.
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(3.2) cI~*= 0
aEIN

where 4 is the set of alternate~‘ ~(M) -valued a-forms p (17) on 2 (4 0 = ~t~’ ~(M))

local in the following sense: the forms p are of the type:

(3.5) p : (~Zi,..., ~ E 2x ... (a times) ... x 2 -+ 0(D,fZ,,...,D~Z)E ‘~~(M)

with 0 a ~~(M)-va1ued %‘(M)-linear a-forms on 2 and the D,, i = 1 a,
linear differential operators: 2 —*2. 4~* becomes a GCDA (4*, 6, -) if equipped

with the wedgeproduct

(p - ~ ~e+a~ =

11
(3.6) — — ~ X(a)~~(~Z01,...,~a ~

2a~o+1~”’ ~a(a+&
a. ~.

andthecoboundaryoperator(of Lie algebracohomology):

~2) = ~ (_ 1)1+1 ,p([~,, ~ ~
0~i<f~.cs

(3.7)

6=0 on 4~0

Explicitly, 6 is a linearoperatorof grade1 fulfilling

(3.8) 62_O

(3.9) 6(~’-~l’)=(&y’) ~+(—l)°p-6~i, pE4~, ~1,EcI*.

For the proofof theseclassicalfacts we referto, e.g. [1, Corollary 9] (caseA =

= V=~(M)).

§4. COHOMOLOGY OF .2’ RELATIVE TO THE REPRESENTATIONSPACES
A~.THE DOUBLE COMPLEXES (&~*,d, s)(j~*, D, s). THEGCDAs(*& /~,x),
(*flt,~~,~, x), ~ A, x), (*~\o,A, x). THE DGLS ~ A, [AD, ~ A, [‘-I)

Having at hand all prerequisites,we now cometo oursubjectproper,a combi-

(1?) The subsetof those p obtainedwith operatorsD- of degree zero is a sub -GCDA~
~, -)of(4*,~,-).
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nation of the structuresin sections2 and 3. The matchingis obtainedby a cano-

nical constructionavailable wheneverone hasa representationp of a Lie algebra

(over some abelianring) on a module over this ring. In our casethe Lie algebrais
2, the ring ~ the ‘~‘~(M)-moduleA*; andthe representationis p (direct

sum of the restrictions of p to the componentAt’). The additional structure

of A*, resp. A~’ as GCDAs (and of A~’as a DGL) producesinterestingextra
features: products x and [—1, a double complex and associatedtotal complex,

GCDAand GDL structures, the BRS transformations, etc. We now describe the
<<Chevalleycohomology>>which is <<local>> by construction.

From here on we use the shorthandsA* = A*(F, 5(L)), A” = AP(P,5(L)),
= AP(F, Sk(L)) (in particular A~= AP(P, F.), Af = AP(P, L)); and the cor-

respondingshorthandsfor A replacedby A.

[4.1]. Thedoublecomplex(A**, d, 6)

Considerthe tensorproductover ‘tf’~(M)= A~(18)

(4.1)

doubly gradedas thedirect sum of subspaces

(4.2) A”°=A~® ~°, a,pEIN

themselvessplitting into subspaces

(43) ~~r=A~®4~ (hence A**=o(A~*= 0k

(a is the <<ghost number>>,p the degreeof form, k the tensortype).Theelements

of A””” are interpretedasA*~valuedmultilinear forms on 2 (19), accordingto

theidentification

U E A* *

U(&21 ~) = p(~2~
(4.4) U=r®~p~ , ~E4°.

forall fZ1,..., &20E2
TE A*

We now turn A** into a double complex with horizontal differential d and

(th) All the subsequenttensorproducts areover ~ “(M). It is temptingat this point to
work with tensorproductsoverct ~(A’f).However, one can, alternatively consider the purely
algebraic theory where tensor productsareoverC. The subsequent results arethenmaintained,
with appropriatereplacementsof ~ ~(M)by C. Ontheotherhandthepresentconstructioncan
bemadereplacing~ by ~ (seefootnote16))with maintenanceof all results.

(19) In other termsIV”~is identified with the A* -valuedGrassmannspaceoverthealgebraic
dualL* ofL.



A DIFFERENTIAL GEOMETRIC SETTING FOR BRSTRANSFORMATIONS, ETC. 455

verticaldifferentials:

cx ghostnumber

(4.5)

-~ p degreeof form

Thisarisesby setting

UEA*a
(4.6) (dU)(&~i,..., ~ = d(U(&2 i,...,

andon theotherhand(20)

(— 1)” (— l)’p(~2~)~

(4.7) + (— l)1~’U([&~
1,~]‘ ~

0<i<f~a

UEA*O, a~l; ~

(sX)(~2,,,)= —p(~2~), XEA*O

(in fact sU = — (— lY’6,, U, with 6,, the coboundaryoperatorof the cohomology

of 2 relative to the representationspaceA*). With thesedefinitionsA** (in
fact eachIS.,~”’, k E IN, acquiresthe structureof a double complexi.e., we have

d
2 = 0

(4.8) 52=0

sd+ds=0

The corresponding total complex (*~,A) is defined as follows: the (single)

total gradingis

(20) The minussign r.h.s.of (4.1) is to ensurethetraditionalminus signsr.h.s.of theB.R.S.

relationscf. Section 5 below.



456 D. KASTLER, R. STORA

*A(=A**) ~

(4.9)

with “IA = 0

andthe total derivativeis

(4.10) A=d+s

fulfilling

(4.8a) A2=0

(note that d, s and A are of grade 1 for the total grading).Proof of thesefacts:

(4.8): d2 = d2 o ~ = 0. Last line (4.8): the coboundaryoperator6~commutes
with d since.acting<<internally>>(on the argumentsof U) whilst d acts<<external-

ly>> (on the value of (I) — the factor — (~ l)P then turns commutation into

anticommutation.Secondline (4.8): s is known to be a coboundaryoperator:

fora proofwe referto e.g. [1, Corollary 9].

[4.2]. TheGCDAs (IA*, A, s~)and(il~,A, “s)

We now introducea bilinear product~ onIA**. We set

TEA*, r’EA1’

(4.11) ~

~EA°, p’E4~*

alternatively

(U% ~

11
(4.1la) = (— l)°~— ~ x(a U(&2

1 ~ x v(~~1’~a(a+p)~

UELk**, ~ ~ 2.

We now have that (“‘A, A, ,~) is a GCDA with (“‘A0, A, ~) as a sub-GCDA(21).

This is proven as follows: the fact that (*A, x) is a graded-commutativealgebra

is provenin Appendix A, cf. (A.30),(A.3 1). We alreadyprovedthat A is of grade

1 and squarezero. Now d and s, and henceA, are derivativesfor the product~.

(21) *A0 is ~ equippedwith thetotal grading(4.9).
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We check that for d: given UE ~ yE ~qP ~ . . ~ E .2’ we have,

from (4.6), sinced is a gradedderivationfor ~:

(4.12) d(U% ~ =

11
=(

1)aq_ — ~ x(a)-
l”•

- (d U(~201,...,fl0~)x (V(f~o(c,+ 1)’’’~u(c1 +I~+

+(— l)”U(~01’~’~o) ~ dV(&l(~1)

= (— l)”~ (— l)~(dU~~ + ( ~)P+a(Q+ ‘kU% ~

The proof for s is obtained as follows invoking Theorem [1.81 (vi) of El]:

denoting by V the product on IA** obtainedby discardingthe factor (— l)a~~
r.h.s. of definition (4.12a), the fact that p(~

2),~ E .2’, is a derivationof(A*, x)

implies that is a derivation for the product V. We then have, for UEAPc~,
VE A~

(4.13) s(U% V) = —(— l)P+~~~6~(UVV) =

=—(— l)P+~+o~(6~U)VV+(— l)~UV6~V)=

=—(— l)’’~’(sU)V v~(_~)P+~34.aquy
5v=

=sU% V+(—l)~~°U%sV.

Note that, since d and s preservethe tensortype, each (A~~*,d, s) is a double
complex with total complex (“‘Ak, A). Moreover (*A0, A, ~) is a sub-GCDA

of (*IA, A, ~). The fact that *A0 is closedfor the product~ stemsfrom the fact

that A~’ is closedfor x. And *j7t~ is stableunderA (in fact underd ands) because
the latterpreservethe tensortype.

[4.3]. The DGL (*A1, A, [k])

The case k = 1 deservesspecial attention. We define a bilinear product on

A~’*be setting

XEA*, ~

(4.14) [X®p®i~i]=(_l~~[Ap]®(p~ji)

~PE4’*

equivalently
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1 1
[A ~ = (_ l)°~—~ —~- x (a)

a. ~

(4.14a)
[A (&2~, �2,~)- B(~20(0+ 1)’”’~o(o +

Then(*A1, A, [~]) becomesa DGL (22).

Proof The fact that (“‘A,, [k]) is a gradedLie algebrais shown in Appendix A

(iv) cf. (A34). A preservesA~and is of squarezero and total grade 1. On the

other hand d and s, and thus A, acts asderivations of *A for the product [~-].

Ford this follows from [A.2] (ii) in AppendixA. Theproof fors is againobtained

by invoking Theorem[1.8] (vi) of [1]: denotingby 0 the productonA obtained
by discardingthe factor (— l)’~r.h.s. of definition (4.l4a), the fact that p(~),

fZ E 2 is a derivation of (Aj”, []) implies that is a derivationof A”. We

thenhave,forA EA~°,B EIA~,

(4.15)

= [sA~B] +(— l)”~°’[A ~sB].

[4.4]. Action r of G on IA** = *IA The operators 0(u) and i(u)), u E L, onA**.
Commutation and derivation properties

On IA** = A* 04~*(r*A) we define the action r of the group G, and the

operators0(u), r(u), U EL, by tensoringwith id0~:

(4.16) r(g)=r(g)eid0~, gEG

(4.17) 0(u)=0(u)®id0~. uEL

(4.18) i(u)=i(u)uid0~, uEL

alternatively,for UE A**, f~~ f~E 2

(4.16a) {r(g)U}(~Z1,...,~i~) = r(g) {U(f2 ~

(4.17a) {0(u)U}(f~, flc,) = 0(u){U(f~1

(22)

tA
1 isA~”equippedwith thetotal grading(4.9).
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(4.18a) {i(u) U)(&2,, . . - , ~ = i(u){U(~,,. . - , ~2)}

(notethat r(g), g E G, preservesthe ghostnumber,the degreeof the form, and

the tensortype).
Wethenhavethefollowingcommutationrules

(4.19) i(u)s+si(u)=0, uEL

(4.20) 0(u)s—s0(u) = 0, u EL

(4.21) r(g)s—sr(g)=0, gEG

(4.22) r(g)d—dr(g)=0, gEG

(4.23) r(g)A — Ar(g) = 0, g E G

(4.24) i(u)i(v)+i(u)i(u)=0, u,uEL

(4.25) 0(u)0(v)— 0(u)0(u) = 0([u, u]), u, v E L

(4.26) 0(u)i(u) — i(v)0(u) = i([u, u]), u, u EL

(4.27) 0(u)d — d 0(u) = 0, u EL

(4.28) 0(u)i(u)—i(u)0(u)=0, uEL

(4.29) i(u)d + d 1(u) = ids(L) 00(u) ® id
0~

i(u)A + Ai(u) = 0(u) — Ad u ®idA ® id0~.

Moreover,we have -

d
(4.30) — I r(etl~)= 0(~~), u E L,

dt r+0

and thefollowing invariance,resp.derivationpropertiesin (*A, ~):

(4.31) r(g){U% V}=~r(g)U}%{r(g)V}, U, yE *IA gEs

(4.32) 0(u){U~V}=~0(u)U}%V+ U%O(u)V, U, VE*/A, uEL,

(4.33) i(u){U% V}={i(u)U}% V+(— 1)” U%i(u)V, UE”IA, yE *IA u EL

and in (*A []):

(4.34) r(g)[A B] = [r(g)A r(g)B], A, BE *A, g E G

(4.35) 0(u)[A B] = [0(u)A B] + [A ‘- 0(u)B], A,BE *A, U EL

(4.36) i(u)[A B] = [i(u)A B] +(— l~’[A i(u)B], 1 A E “IA, BE *8k, n EL.
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Properties(4.19), (4.20) and (4.21) are due to the fact that 5 acts<<internally>>

whilst i(u), 0(u) and r(g) act <<externally>> (23). Property (4.22) through(4.29)

follow from the correspondingpropertiesin */A, resp. */A, via tensoring with
id,F* (immediate from [1.3] (ii), (iii)). We check the derivation properties(in
particular the fact that properties(4.33), (4.35) hold w.r.t. the total grading).

With U=rupEA~o 4° U’=r’®’p’EA~®4°’, we have U% U’=(—l)°P’
(r x r’) 0 (p ~p’),hence

(4.37) 0(u)(U% U’)=(—l)°~’{(0(u)r)xr’ +Tx0(u)T’}®(~p-~o’)=

={(O(u)T)op}%(r’a~c’)+(r®p)%{(O(u)T’)®~p’)}=

=~0(u)U%U’}+ U%0(u)U’

and

(4.38) - i(u)(U% U’) = (— l)°P’{i(u)r x T’ + (— l)~’T x i(u)r’} 0 (‘p p’) =

=(— l)°~~°~{i(U)r®’p’}%{T’Ø‘p}+

+ (—l)°~’~f.1 + a(p + ‘~(r® p) ~ {i(u)p 0 p’} =

=i(ü)Ux U’ +(— l)~~°U~i(u)U’

and with A = X opE A~’o0°, A’ = X’to p’E Af o 00 thus A ~ A’ = (— l)°’°

(Xx X’)o (p -

(4.39) 0(u)[A —A’] = (— l)°~{[0(u)X- X’] + [A - (0(u)X’]}o (p - p’) =

=[0(u)X®’p~-X’o ‘p’]+[Xtop~-0(u)X’o3o’]=

= [0(u)A ‘-A’] + [A 0(u)A’]

and

(4.40) i(u)[A’-A’]=(—l)°~{[i(u)X-X’]+(—l)~[X-i(u)X’]}o(’p-p’)=

= (— l)°” ~°~[i(u)X op - X’o p’] +(— 1 )OP+P+0(P+ “[Xo ‘p

= [i(u)A ‘-A’] + (— l)~~°[A i(u)A’].

[4.5]. The Ad-equivariantdouble complex (A~*,d, s), GCDAs (*A, A, x) and
(*IA0, A, ic) and DGL (*A1, A, [‘-1).

With p, a, k E IN we now consider the fixpoints sets

(23) This implies commutativityof i(u), 0(u) andr(g) with b~,turnedinto anticommutativi-
ty for theoddgradei(u) bypassingfrom 6,~,to s.
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(4.41) P~~°={UEA~°,r(g)U= U for all gE G}=

= A~0

equivalently,for G connected,

(4.4la) A~°={UE 8t~°,0(u)U= 0 for all u EL}

with thebigradedspaces

(4.42) 1* = 0 A** = 0
p,a

(~P~= ~ A~°)andthe gradedspaces

(4.43) *AkOfl4t\k *A=elnA

wheren is the (<total grading>>

(4 44) “A = 0 AP° A = 0
k p+on k

We now havethat (Ar, d, 5), k E IN resp.(A**, d, s) are sub-double complexes

of the double complexes(/A*,d,s) resp. (A**, d,s); that (*~,A~),resp.
(*i~

0, A, ~) are sub-GCDAsof the GCDAs(*A, A, ~), resp. (*IA0, A, “); and that

(* A,, A, [‘-1) is a sub-DGL of the DGL (*A, A, [‘-]). Thesefacts immediately
result from the commutationof r(g) and d, 0 cf. (4.21), (4.22)); the commuta-
tion of r(g) and A, ~ (cf. (4.23), (4.31)); and the additional commutationof
r(g) with [~] (cf. (4.34)), g E G. Moreover, with h A~* the set of invariant
horizontalrealdifferential formson F:

hA**= 0 h1A~°

0 0

(4.45)
hI~~0°=(FE//3~°P; i(u)F=0 forall uEL)

and

(446) “A = 0 /A”°
0 0

we have that (h /A~*, d, s) is a sub-bicomplexof ( ~ d, s) and (h* A0~~ ~)

is a sub-GCDA of ( A0, A, -~) (this follows from the facts that h A~’* is stable
under both s and d, owing to (4.19) and (4.29) (remember that 0(u) vanishes
on A**).

Remark. On IA** we have also an action (®. I) of the Lie algebra 2, given as

follows: for UEA**, ~ al’’’ ~ E 2:
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(4.47) {e(~)~ =

= p(~){U(~1 ~)} + ~ [~, ~ ~i-i”~)

(4.48) {I(&z)U}z1,...,~2~,)= U(.cZ,, ~2

Fora proofof thesefactsseee.g. [1] Theorem[1.8] (i) (iii).

[4.6]. Alternative definition of(*A, A, ~)

We now describea different way of looking at the C-tensorproductversionof
*fl~(cf. footnote (18)) which hasalsosomeconceptualinterest.

SinceA* was definedasthetensorproduct5(L) 0 A~,thespace*IA is thedouble

tensorproduct (24)

- *A=5(L)oA*o~*
~ 0~

(4.49)
A~°=5(L) 0 A”o 4°k k ~ 0~

on which the product~ is definedas follows: we have

(4.50)

f,gES(L)

flEA~, ~EA~

‘pE4° ~1E4*.

This canbe written alternatively

(4.50a) (f®(’i o’p)}~(go(p o 1/i)) = (f~g)o{(i~ ®‘p) (~®0)}

where the wedge product of the r.h.s. is the skew product of the GCDAs

and c1*,naturally included in *A as *A0 (cf. (A.l7) in AppendixA). We could
thus haveconstructed(*A, A,’~)beassemblingthe algebras(5(L), ~), (th~,d, )

and(c1*, 8, -) as follows: first build theskew tensorproduct (*IA0 ‘-) of graded
commutativealgebras

(4.51) *A0A~®4*,

with correspondinggrading

(24) Written without parenthesesaccordingto associativityof tensorproduct.
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(4.52) “j~~~=®
p+a=fl ~~‘d)

and skew tensor product(25)

flEIA
0*, ~

(4.53) ~ ~)®~ 0)
‘pE~°, 0E~*.

thenbuild the tensorproduct

(454) = S(L) ® *A

with product

f,gES(L)

(4.55) (foS)~(goT)=(f—g)®(S-T),

S, TE * A0.

We obtain in this way the graded commutative algebra (* A, ~) embeddedas
such in the graded commutativealgebra(* A, ~). We recapitulateour operators:

they are all totally split tensorially

(4.56) r(s) = Ads oR5
4’ o id

0~, sE G

(4.57) p~4’)= ids(L) op(’4’) o id0~, ‘I’ E ~

(4.58) p(~l)= ids(L) ~ ® id,1,~, ~l E 2

(4.59) d = ids(L) od o id0~

(4.60) ~0= id,~1~o(—l)P® 8

(4.61) i(u)=ids(L)oi(u)oido*. uEL

(4.62) 0(u) = Ad u ®id A~oid0~+ ids(L) 00(u)o id~, U EL

(4.63) (26) F=PoidA* oid0~

except for the operator p in

(8.64) A=d+s0+p

(25) ~ in A~is not the skew tensorproductof derivativesd and0. The latteris d + s0=

=,~—p,seebelow.
(26) See below [4.7] for astudyof P on ~A.
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givenby

(4.65) p - = ids(L)®P -

with

(4.66) {p - (cx ® p)}(~2
0 ~) =

a E A*

= ( 1)t’p(~0 ,...,f~0)p(&2)cx, ‘pE 4°.

fl E 2

Note that the product [‘] on
4’A, = L ®A~ is givenby

U, v E L

(4.67) [(uoS)’- (ue7)]= [u,v] 0(5 - 7),

S, TE *IA
0

[4.7]. Covariantderivatives.a-connections

Appendix B applied to the DGL (* /A1, A, [‘]) yields a linear assignment,to

eachBE A1,~ofhis xcovariant derivative>>

(4.68) = A + [B -]

with square

(4.69) (~B)2.... ~ -

wherethe <<curvature>) ofB. ~ E 2/Ar, givenby

(4.70) ~BAB+ — [B~B]

fulfills a <Bianchi identity>>

(4.71) ~B~B0

Now we have a uniquegraded derivation (again denoted~B) of(* A, ‘~)restrict-
ing to ~B ~ 4’/A and to A ~ */A (in fact the latter is the sum of A and of
the unique gradedderivation restricting to [B’ -] on and to zero on
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~jB is givenby (27).

~B(AXXA)

k

(4.72) =~ (—l)”’ kA ...%A~_1x~
8 A, %A

1~1x~1(Ak

A. E “i/A

B thus defined on 4’A fulfills (29)

(4.73) (~B)2 = [~B

(4.74) 0(u) .~B...~B.0(u)_[O(u)B~.] uEL

(4.75) i(u)o ~1B + ~6B i(u) = 0(u)+[i(u)B” . ]—idA*OAduoido*, u EL.

Proof (4.73) both sides are derivations, coinciding on */A~and*A,.
(4.74) (resp. (4.75)): both sides are graded derivations (resp. derivations)

vanishing on * and coinciding on * IA,: as results by combining (4.27) with

(4.32) rewrittenas(4.76) (resp. (4.29) with (4.38) rewritten as (4.77))

(4.76) 0(u)o[B’- . ]—[B~ . ]oO(u)r[O(~)B’ •] BE’/A~

(4.77) i(u)o[B’-~]+[B~]oi(u)=[i(u)B’--], uEL.

Let us call A-connectionsthe elements of A1 fulfilling

(4.78) i(u)A=uE
0A

0.

Let A be a A-connection:we havethe commutationrules

(4.79) 0(u)~
4— ~Ao(u) = 0, u EL

(4.80) i(u)~~”+ ~Ai(u) = 0(u), u EL

showing that ~ A preserves* A and h** A. Moreover, in that case ,~ belongs
to h2 /A, (in fact ~ preserves * A for all A E * A,).

(27) Generally,for A E PA
1, p even (resp. p odd), there isa uniquederivation(resp.graded

derivation)of (t/A, x) restrictingto [A - - ] on */A~andto zeroon

(28) On has also the same formulawith [B ‘- - ] instead ~

(29) With the understandingthat [A ~- ] is the extension,describedin footnote7 above.
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Proof If A E * A~.0(u)A = 0, ensuring (4.79), which in turn implies ~~4* Ac
C4’ A. If in addition i(u)A = u (requiring that A E 11A,), we have [(i(u)A ] =

= [u’- ‘] = idAs oAd u o id
05, hence (4.75) then reduces to (4.80), which

implies ~A h* C h
4’ A.

We end up this section with a discussion of the descent from * ~k to *

by means of polynomialsPE Ik(L).

[4.8]. Let Pbe an Ad-equivariantpolynomialofdegreek on L: FE Ik(L). Setting

(4.81) P(ro’p)=P(r)o’p, TEA*, ‘pE~*,

in other terms

(4.81a) {PU}(fZ, = P{U(~Z
1 f2)}, UE A””’, cz,,...,cZ~E2

definesa linear map:P : -* /Ak —~ whichpreservesthe ghostnumberand the
degreeofform, commuteswith theaction of G:

(4.82) Por(s)r(s)oP, SEG

(hencemaps* ~k into andfulfills

(4.83) Pos=soP

(4.84) Pod=doF

(4.85) P0AA0P, UEL

(4.86) PoO(u)=O(u)oP, uEL

(4.87) Foi(u)=i(u)oP, uEL

and

(4.88) PO~AAOP AE’/A,

(4.89) Po[A’~ ‘]=O, AE’A,.

Proof (4.83) through(4.87) result at sight from (4.59) through(4.66) (remem-

ber that F- Ad ii = 0 since PEIk(L)). (4.88) follows from (4.85) and (4.89)
which immediatelyfollows from the

LEMMA. Letu EL, fE S(L),5, TE we have7

(4.90) [(u®S)’- (f®fl] = Ad u(f) o(S~7)

indeedPoAdu= OthenimpliesPo[(u o’I’)’- - ]=0. -
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Proofof the Lemma. Denotethe r.h.s. of (4.91) by 5~5(f®7), we went to have
0uS= [(u ®S)’-~]. This holds on /A~by definition cf. (4.68), and trivially on

To prove that it holds everywhere,it thussuffice to checkthat 0u5 is a
derivation of the same type as [(u 0 S)’- - ] (30). We have indeed, for SE “ A

0,

TE “A0

(4.91) (0s(fofl)x(f’®T’)+(_l)
m”(f®flx&~s(f’0T’)

= (Adu(f)o(S’- T))%(f’o T’) + (— l)m”(fOT)(Adu(f’)o(S’- T’))

= (Adu(f)~f’)o(S’- T’ T’) +(— 1)m”(f~Adu(f’flo(S’- T’- T’) =

= (Adu(j’)]f’ +fAd u(f’))(S- T’- T’) =

=Adu(f~f’)®S’T’-T’=&~
5(f0T)x(f’0T’). •

§5. THE BRS RELATIONS

We now exhibit the BRS relations as realized geometrically within the double

complex ( A~, d, s) equipped with theproduct [‘].

As we noticed in section 1, the set A of connection one-forms is contained in

A~, embeddedin A~’
4’ as /A10 = A,’ o IR.

On the other hand, let w be the <tautological form>> on 2 (equal to the
identity map).

(5.1) w(f~)=~2, &~E2.

Rememberingthat we identified .2’ with A,0, we set that w as given by (5.1)

appears as an element of /A~1= A,0 0 L. Hence ~ accomodatesboth a and

aE /A10

(5.2)

wE Ar’.

We therefore may considersa, 5w, dc,,, [a w] and [w w] in /A~*c A**:
in this sensewe then have the BRSrelations

sa=—dw—[a~w]

(5.3) 1
5W = — — [w — ca].

2

(30) Cf. (B.8) in Appendix 8.
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Proofof theserelationsby definition (cf. [4.7]), sa E /A** is givenby

(5.4) (sa)(~7)= p(fl)a = — df~— [a - ~], 12 E2

(cf. (2.12)), whilst, alsoby definition (cf. (4.6a), (5.1)):

(5.5) (dw)(fZ) = d(w(f2)) = d~l, &2E2’

and (cf. (4.l2a))

(5.6) [a’- w](~)= [a - w(~2)]= [a -

proving the first line in (4.3). As for the second,we have,by definition of sw E

E /A02

(5.7) sw(c10,~Z~)= — (p(&20)w(&21) — p(~2,)w(~2~,)— w([f10, &2,]) =

= — (p(~0)~,—p(~1)~o—~0’ ~2,])=

~ c~1}—[~l1-

= — ~ - ~u1]

(we used(4.7) and(2.13)).On theotherhand

(5.8) [w ‘ w](~7~,~Z,)= [w(~Z0) - w(~Z1)]— [w(~2~) - w(~0)]=

= - ~i
1 — ~ - ~o1 = 2[~Z

0-

proving thesecondline in (5.3).

Remark. The <<ghost>> w arising in the physical literature is an anticommuting
<<field>> w(x) with values linear maps 2 -+ L. Specifically, assumingtheprincipal

bundle F trivial (so that 2 consistsof smooth maps~7 : M —* L) and choosing

a base e in L (with dual base e°in the dual L* of L), we have, for x EM

(5.9) w(x) = w°(x) e~

i.e.,

(5.9a) (w(x), fl) = (w°(x), &2) e0, ~ZE2

where w°(x)E2* is the dual baseof the <<base>> *
5~®e

0of ~2= ~‘~M) ®L
in the following sense

(5.10) <w°(x),8~0e~)=O~°8(x—y), x,yEM.
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In the physicalliterature,theoperators is definedby requiring

(5.11) sw”(x) =— —f~”w”(x)ow”(x), xEM
2~

wherethe arethe structure constants of L:

(5.12) [e,~,e]= Ef~e0

theserelationsimplying

(5.13) sw(x)=——[w(x),w(x)], XEM,
2

in thesensethat onehas,for ~ ~, E .2’:

(5.l3a) sw(x) (f~, fZ,) = — [(w(x))(f~0), w(x)(cZ,)].

The relation betweenout w = ida,andthe above <ghost>>is given as follows:
onehas

(5.14) {w(x)}(fZ) = w(S2)(x)= ~2(x), XEM, ~2�2.

Indeed,for ~7= fo u, fE ‘~‘ ~(M), u EL, onehas,from (5.9a)and(5.10)

(5.15) w(x) (fou)= E~(w0(x)Xfou)e

= E(wa(x))(ffY)6ydY®~u8e~)eo

= EfdYfY)Eu~&~’8(x_y)

= f(x) - u°e = f(x)u

= (fou)(x).

Furthermore,if one extendsthe correspondence(5.14) to elements 0 E /A00 by
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requiringthat

(5.16) ~0(x)}(~~ ~ = 0(f2 ,~..., f2)(x)

one obtains (5.13) by equatingthe evaluationof bothsides of (5.7) for x EM.

§ 6. COHOMOLOGY OF .2’ WITH VALUES IN LOCAL FUNCTIONALS OF

CONNECTIONONE-FORMS

This section describesthe cohomology which accomodatesanomaliesas ele-

ments of the first cohomologygroup. This cohomologyarisesfrom a construc-
tion analogousto the one describedin section4, but usinga different represen-

tation spaceof the Lie algebra2 of the gaugegroup ~. We denoteby rb0c(A)

the set of mapsfrom A into the realsobtainedas follows: ‘y E rb0c(A) whenever

(6.1) ‘y(a)= ~(a),

whereC is a smoothq-chainin M and~ is a map (31)

(6.2) aEA—*M(M,IR)

suchthat, for all a, a’ E A

(6.3) Supp (~(a)—~(a’))çSupp(a —a’),

where Supp refers respectively to A~(M, IR) in the left hand side and hA’(P, L)
in the right hand side (due to Ad-equivariance,the M-support is well defined

on hA1(P, L)). We further define a representationp~,of ~ on 010~~(a)(andan
accompanyingrepresentationof 2), by setting

(6.4) ~p~C4’)7}(a)=

d
(6.5) ~ (a) = — -y(p(et0)a).

dt

We now considerthe cohomologyof 2 with valuesin the representationspace
rIoc(A) (anotherexampleof the generalprocedurealreadyencounteredin section

(31) We call suchmaps -y local functionalson A. Note that ourdefinitionof locality encom-
passesthe casewherea anda’, insteadof beingconnectionone-forms,aresectionsofa smooth
fiber bundle over M (not necessarilyvectorial), thesupporton the left handside stayingUn-
changed,whilst the supporton the right hand side is now definedasthe closureof the com-
plementof theset{x EM;a(x)= a’(x)}.
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4). On the space

F * = A(2, I’ 10C(~))= I~IOC(~)®44’ = ~ F
0

(6.6)

= A0(2, r I0C(A)) = r l0c(A) o

direct sum of the Fb0c(A)-valued alternate multilinear forms on .2’, we consider

the coboundary operator &~,given as follows: for ‘yE I’

(6.7) (O~~)(~~~2a) =

= ~ (— l)’p(f~)’y(~2
0 ~ +

+ ~ ( ~)t+/([~, ~], ~ ~

0~i<j’~~

One has 6~= 0, (F’”’, ~ then definesa cohomology denotedH*(2, Fboc(A))

Accordingto Wess-Zuminocompatibility anomaliesareelementofH
1(2, rloc(A)).

§7. THE HOMOTOPY FORMULA

This section describesan algorithm (analogueto the usual CartanChemWeil
homotopy formula) which provides a meansto classify anomalies [12].

With a E cx and w considered as belonging to 1 ~ (cf. (5.2)) we set (32)

(7.1) A=a+w

and consider#~‘~and ~(A as defined in (4.71), (4.69) for the element tA of

A, t E [0,11.Wethen have the limiting values

,~0A = ,~0= 0

(7.2)
~lAAFada+... [aa]

2

andthe relation

(32) A is thusa p-connectionin thesenseof [4.7].
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d
(7.3) ~tAA = — ~tA

dt

Iroof The first line of (7.2) is obvious. The secondfollows from the BRSrela-

tions: indeed

(7.4)

=F0+sw + — [w~ w] +sa +dw +[a’~ w]
2

wherewe usedthe fact that [a ct,] = [w a] in the GDL( /A’~, A, F’-]).
On the otherhand we have

(7.5) ~rA = tAa + — t2[A A]

where(6.3)

d
(7.6) _A=AA+[tA.~~A]=~tAA

dt

From (4.53), (6.3), the Bianchi identity (4.52),and the fact that (* A, A, x) is

aGCDA, we havethat

(7.7) ~tA(A ~ ,~tA ~ ,~rA % - - - ~ ~ =

d

dt

ld
— — (,~7fA~ ~tA ~ - - % ~tA~

k dt

Applying P on the left and integrating w.r.t., t from 0 to 1, we obtain, using

(4.88) and (7.2)

(7.8) kA f ~

“O

(i.e.)

(7.8a) AQ21’1 =
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with

(7.9) Q2k_1 = k f P(A % ~tA ~ - - %

‘0

Writing Q
2~’~’as sum of homogeneous elements for ghost number and degree

of form:

(7.10) Q2k_1 = Q0~2k1 + Ql~2k_2+ Q2.2k_3 + . .. +

relation(6.8a)yields

component 2k,0 : dQ2k_l~o=0

component 2k— 1, 1 :sQ2~1~0+ dQ2k_2.l = 0

component 2k—2, 2 :sQ21~2’1+ dQ2~3’2=O

component 0, 2k :sQ°’2~’= F’.

We are particularly interestedin the third relation which furnishes a means of

computing anomalies. Assumetheprincipal bundleF to be trivial, and let a :M -+

-+ P be a smoothsection of F. Applying the pull back by a, which commutes

with d, we obtain choosing k so that 2k — 2 = d, thedimensionofM, the follow-

ing vanishing d-form M

(7.12) a4’{(sQ2~2”)(~Z
0,fZ,)} + d{o*Q

2lc_3~2(F’Z
0, £2~)} = 0, ~ ~, E 2.

If we assumeM compactwithoutboundary(euclideansituation), Stokestheorem

then implies

(7.13) fa*{(sQ2k_2~l)(;, ~,)} = 0, ~ ~ E 2.

Let

(7.14) a(~,a) = a*Q
2~2~’(~)=

=1 1 Qt2~2,’(~)dt

M ‘0
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with

(7.15) Q~=A%(,~tA)%(k_1) A =a +w.

We now showthat (7.13),which also reads(cf. 4.84)

(7.13a) fa*fPsQ~2k_2)(~)dt= 0,

in factimplies the <<Wess-Zuminocompatibility>>

(7.16) b~a~ ~ a) = 0, ~ E .2’

in other words the fact that the cohomologyclass [cx] of cx is an element of the

cohomologyrequiredforanomalies:

(7.16a) [a]EH’(2, [~l0C(A))

For checking(7.16) we note that onehas

(7.17) Q~~
1” = w ~ ~ + (k—l)t(t — l)[a w] ~ a ~ (Fta~_2))

this stemmingfrom

A0” =

(~At)1~1 t(t— 1)fa-’-w]

(7.18)

(~At)0~2= Fta=fFa + — t(t — l)[a a].
2

From this follows

(7.19) Q~”~2”(f~)= x Fra + (k — l)t(t — l)[a x fl] x a x (FttI)~~c_2)

= Qt2k_2~l(F’~,a)

hence

(7.20) p(~7’)Q~2k_2.l(~)=

d
= Q2k2,1([ç~’ &2], a) + — Q2k_2~1(f~,p(e>~)a).

x=0

Therefore



A DIFFERENTIAL GEOMETRIC SETTING FOR BRSTRANSFORMATIONS, ETC. 475

(7.21) {sQ~2~c_2~l}(~2
0,~) = Q2k~2,l([~ f~],a) +

d
+ — Q~k_l~l(~,,p(e~’0)a) —

dX

— Q2kl,1(~ p(e~’~)a) =— 0~Q
2I~~Zl(&2,a).

Relation (7.16) then results from the fact that &~. commuteswith the operation

f a” f1 dtP, as follows from linearity.

[7.2]. Remark. From (6.8a)it follows thatAQ2”1 is a basic form:

(7.22) 0(u)AQ2IC_l= i(u)A21c_l= 0, u EL.

This raises the questionof whether this also holds for Q2~2’1, which would

yield an intrinsic d-form q’ on thebasesuchthat Q2~’21 = ~4’q’ (cf. 2.7) without

recourseto a sectiona” of P(sowithout the assumptionthat thelatter is trivial).
Howeverthis doesnot arise(33), the form Q2lc_2~lis by definition Ad-equivariant

(7.23) 0(u)Q21’2” = 0, u E L,

however Q2k_2~1 is not horizontal. Indeed, we conclude from (7.17), taking

accountof

i(u)w = 0

i(u)a = ul

(7.24)
i(u)Fta= i(u) tFa + — t(t — l)[a a] =

2

= t(t — 1)[ul - a]

that onehas

i(U)Qr-2’1

(7.25) =

t(t— 1)

=(_w%[ul~a]+(k_l)[ul%w]xa+(k_1)[a~w]~a)%(Ft(k_l).+

~

In particular,for k = 2

(33) No more that in the caseof theChern-Simonsform TP. Whatwe havehereis ananalo-
gy to theChern-Simonssituation,with thereplacementa —*A (cf. [9]).
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(7.26) i(u)Q~-”2” = — w ‘~ [U! ~ a] + [ul c~,] ~ a + [a w] ‘~ a =

= [ul ‘ (w s~a)]—2w~[ul~ a] + [a’- wJ ~

UponapplicationofFthe first term r.h.s.vanishes(cf. (4.90),but thetwo follow-
ing termspersist,yieldinga non vanishingresult.

It is easy to find a substitute for Q 2k1 whoseterms Qg,2~~’ —g are basic,
horizontal, replacing the family tA by the family tA + (1 — t)a, where a is a

fixed backgoundconnectionon F, which thenneednot be assumedto be trivial

[8]. The algebraicconstructionsof this paperhave to be generalizedas will be
donein aforthcomingarticle.

APPENDIX A. GRADED DIFFERENTIAL ALGEBRAS

[A.]]. DEFINITIONS. (i) A GDA (graded differential algebra) is a gradedreal

vectorspace’A = 0 .A”, equippedwith a bilinearproductAx A -“‘A: anda linear

operatord : A -+ A (the derivative),with theproperties

(A.l) ~ p,qEIN

(A.2) dA~CA~’~’’, pEIN

(A.3) d(ab)=Da-b+(—lY’da-b, aEA, bEAr, pEIN

(A.4) d2 = 0.

(ii) A GCDA (graded-commutativedifferential algebra) (34) is a GDA A

with an associatedand <<graded-commutative>>product:

(A.5) a-(bc)=(a-b)c, a,b,cEA

(A.6) b -a=(— 1)P~a-b, aE.W’, ~ p,qElN.

(iii) A DGL (34) (differential graded Lie algebra) is a GDA with product (2)

a <<graded Lie bracket>>:

(A.7) b-a=—(—l)~a-b, aEA13, ~

(A.8) ~

aEA1’, ~ cEAr.

(34) In concreteexamplesas those encounteredin the text, it is naturalto denotethe
product of a GCDA by a wedge-likesymbol,and that of a DGL by a bracket-likesymbol.
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(iv) Let L be a Lie algebra and a be a GDA. An action of L on is a pair

(0, 1) of linear mapsfrom L to the linear operators of a with the properties(35)

0(u)A~CA~, pEIN

(A.9)

O(u)(a-b)=0(u)a~b+a-0(u)b, a,bEA, uEL

i(u)A~CA~’, pElN, i(u)Io= 0, uEL

(A. 10)

i(u)(a~b)=i(u)a~b+(—l)~a~i(u)b,aEA~, bEA

and

(A.ll) i(u)2=0, UEL

(A.l 2) 0([u, v]) = 0(u)O(v) — 0(u)0(u), u, v EL

(A.13) 0(u)i(v) —i(v)O(u)= i([u, u]), u, v EL

(A.l4) 0(u)=i(u)d+di(u), UEL

Notethat thesepropertiesimply

(A.lS) 0(u)d= dO(u)(= di(u)d), U EL

(A.16) 0(U)i(u)0(u), uEL.

(In fact (A.l2) follows from (A.14) andthe fact that d2 = 0).

[A.2]. SkewtensorproductsofGDAs.
Let (A = 0 A” d -) and ‘I’ = ( o ‘I” ~, o) be two real (36) GDAs. Their

pEIN ~EIN

skew product as graded algebras is the usual tensor product of vectorspaces

(A.17)

equippedwith the bilinearskew productdeterminedby

(35) (A.9) statesthe fact that 0(u), u EL, is a 0-gradederivation of a; and (A.10) that

i(u), uEL, is a— 1 -gradedderivationof a.

(36) Or for thatmattercomplex.
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aEA, bEA”’

(A.l8) (a®t,o)A((b oil.’) =

pE’I’~, OE”I’

and the grading

(A.19) H~~= A”0’I’0
p+ afl

We furthermoreconsiderthe following operatorson H:

(A.20) D=d+a

where (37)

(A.21)

(A.22)

where(~1)~denotes the grading in relation of A

id on A2”

(A.23) (~1)~ =

—id on A2~’~, pElN

ando r.h.s. of (A.2l), (A.22) denotesa standardtensorproduct of linearopera-
tors (39)

(A.24) (AOB)(aoO)=(Aa)o(Bi,li), aEA, OE’I’.

We recallthat thesedefinitions imply the following facts:
(i) With the product (A.18) and the grading(A.19) H is a graded algebra,

i.e. flfl -
11m c 11n+m n, mE IN.

(ii) d and a are gradedderivationsof H of grade 1 (38). Moreover d and a
anticommute:

(37) Using thesame symbol for d actingon a andd = d ® 14, acting on H shouldcauseno
confusion.

(3$) A linear operatorL on H is ofgrader, r E ff~wheneverLW’ C LIP’ ~, n E !4 (H” =

= 0 , k <0). It is a graded derivation whereverL(cs - j3) =(La) -13 +(— l~’a-L13, aEIi”,
13 E II.

(39) In fact, (A.21) and (A.22) could be written d = d 014,, a = la o6, with ® a graded
tensorproduct of operators.
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(A.25) do + ad = 0.

Consequently,D is a gradedderivation of H of grade— 1 andvanishingsquare

(A.26) = 0,

making(H, 6, ~)aGDA.
(iii) If (A, d, ~)and (‘I’, 6, o) areGCDA, (H, D, A) is a GCDA.
(iv) If(A,d,-)isaDGLand(’I’,6,o)isaGCDA,(ll,D,A)isaDGL.

Proof (i): obvious.
(i) Wehave,foraE~PbE~~,pE~a 0E’1’~

(A.27) d{(a oip)A(b o iP)}= (— l)0~d{(a b) o(~po0)} =

= (_1)a~(dab +(— l)~a. db) o(~po0) =

~

={d(a o~p)}A(bo0) +(—l)~~(aoip)Ad(b oO)

(A.28) a{(aop)A(b osJi)} = (_1)O~o{(a~b)o(ipo 0)) =

~

=(— l”~~’~’~(a ootp)A(b0 0)+(— 1)~~0~~(aop)L~(bo

= {o(a o~p))A(boO) + (— l)~ 0(a o ~o)Aa(bo0)

(A.29) da(a op)= (— l)~d(ao&ip)= (—I)~(dao&p)=

= (—l)~~P~ ‘a(dao~p)=— ad(aop)

(iii) We have, for a, b, p, 0 as above and CE AT, 0 E ‘I’~

(A.30) (aop)A{(bo 0)A(c00)} = (— l)~’(aop)A{(b . c) ®(0 oO)} =

~

= (~l)~T~’a(q + r)+ r(a + ~){(a.b) ®(po 0)}A(c o0) =

= ~

(A.31) (b oiJi)A(aop)=(—1)’1”(b -a)o(iji op)=

= (_~y~P+P~--a1l(a- b) �(po 0)=

= (_~)(a+~I)(P+q)(aop)A(b o0)

(iv) Let a, b, c, p, ~, 0, be as above. For the commutationof a op and b o0,
we have the samecomputationasin (A.31),with thealterationthat, now,b ~a=
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= — (— l)~’~a- b, whence an overal sign, leading to (A.7). We check (A.8): we

have

(A.32) (~~ op)A~(b 0 0)A(c00)) =

= (— l)~”’~ a)(r+ y)+ ar(a op)(b - c) o (‘P 00) =

= (— l)~”~a)(r+ ~)+ ~3r+a(q+ r)(a - b ‘c) 0 (~0 0 0 0) =

=(— l)~~~~(—l)”’~’~(a-b -c)o(po 0°0).

Since cxq + 13r + ‘yp is invariant under circular permutation,the gradedJacobi

identity for H is a consequenceof that for cx, given that (— l)0’>p 0 ‘P 0 0 is inva-

riant under circular permutations,a straightforward consequenceof the GCDA

natureof’P.

Remark. (i) The proof of (i) applies to the more generalsituation where d and

6 are graded derivation of cx, resp. ‘I’, of odd gradep, resp.q. Defining d and a
on the skew productH as in (A.21), (A.22) the latter are still mutuallyanticom-

muting derivationsof H, of respectivegradesp and q.
Indeed,in the proofs (A.27), (A.28), (A.29), no useis madeof the fact that

d2 = 0, 62 = 0, and the gradeof d and6 entersonly throughits parity.

APPENDIX B. <<COVARIANT DERIVATIVES>> IN DGLs

PROPOSITION. Let (L = 0 ~ d, []) be a DGL. For cxE~ F’~EL~2~and
nEIN

the mapD0 : L -+ L are definedasfollows:

(B.l) F0=dcx+ — [cxa]

2

(B.2) D0X = dX + [cx- A].

Wethenhavethat

(i) D0 is a gradedderivation ofL

(B.3) D0[X - p] = [(D0X) - p1 + (— l)”[X - D0p], XE ~ p EL,

whosesquareis givenby

(B.4) (D0)2X=[F0~X], XEL

(ii) Wehavethe Bianchi identity

(B.5) D0F0 = 0.

(iii) The map [cx- - 1:
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(B.7) AEL-+[cx’AIEL

is a gradedderivation of L; in fact D0 is thesumof d and [a - . ] (generallyfor

cx E L~-”~[a - ] isa derivationoforder p in thesensethat

(B.8) [cx-[A-p]] =[a-A] -p]+(—l~~~[X[ap]], XELP, pEL(~)).

Proof (i) d is by definitiona gradedderivationof([L, - ]): thusthe first assertion

in (i) is a consequenceof (iii), which in turn follows from the following special
caseof thegradedJacobiidentity: for XE ~ p E L~,a E ~

(B.9) (~l)~q[~- [A - p]I + (— 1)”[A - [p cx]] + (—

1)pq[p - [a—A]]

with the commutationproperties

(B.lO) [pa]=_(_l)’~~[cxp]

(B.ll) [p [cx- A]] =—(— l)~[a - A] - p

implying

(B.l2) [a - [A - p1] = [a A] - p1 + (— 1Y~”[X - [a - pJ], XE L
0’~.

Wenow check(A.4): we have, taking now n = 1

(B.13) (D0)2X = d(dA + [a - A] + a(dA + [a - A]) =

=[da~—A]+[a~[aX]]

however,using(A. 10)

(B.l4) [a[a-A]]=-- [a-[a—X]]+[a-a]—X]—[a[a-X]] =

= — [a-cx]-A].
2

(ii) We have

1 1
(B.15) Dafa=dFa+cx~Fa=d da+ — [aa] + a da+—[a’a]

2 2

1 1

= —[dcx ‘cx]——[cx-da]—[a da]=0.
2 2

where [dcx a] = — [cx dcx], due to the commutasionrule, and [a - [a - a]] = 0,

to thegradedJacobiidentity.



482 D. KASTLER, R. STORA

(iv) Immediatefrom (B.4) and(B.5).
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