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A differential geometric setting
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Abstract. The Becchi-Rouet-Stora relations and the cohomological construction of
anomalies of gauge fields are described within the theory of principal connections
of smooth vector bundles.

INTRODUCTION

This paper provides a detailed introduction to the differential geometric and
and cohomological framework underlying BRS transformations and anomalies of
gauge fields. These items both appeared in the study of perturbative renormaliza-
tion of gauge fields — renormalization being required to yield in particular physi-
cal answers independent of the choice of gauge [3]. The vanishing of anomalies
thus appears as a criterion for the relevance of fundamental field theories (1).
However anomalies play also a positive role in a different context, that of pheno-
menological theories for the search of which they provide a means of writing
«effective lagrangiansy. It is in this context that anomalies were first found l11].
Though they arose in a quantum (field theory) context, BRS transformations
and anomalies ultimately appear as purely classical (differential geometric)
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(1) See, however, [10] where it is suggested that gauge theories with anomalies may have
a consistent interpretation at the non-perturbative level.
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objects, which can be isolated as such from the original quantum context — this
is what we do in the present paper. In fact the anomalies themselves — and the
algorithms which are useful for their description — are elements of certain vector
valued Lie algebra cohomologies related to the ambient Yang-Mills principal
bundle. This fact was realized following the discovery of the Wess-Zumino.
compatibility condition, which in fact characterizes 1-cocycles of the cohomology
of the Lie algebra of the gauge group with values «local» functionals of the
potentials (connection one-forms).

Our paper comprises seven sections, amongst which sections 1, 2, 3 and 5
describe prerequisites to the actual subject matter in sections 4, 6 and 7. We
included these prerequisites in order to be complete, and also because of the
necessity of fixing notation. Section 1 describe the De Rham complex A* of a
principal bundle P with values in the symmetric tensors on the Lie algebra L
of the structure group G, and defines the commuting actions, on this De Rham
complex, of G and of the gauge group ¢ . Section 2 describes the subcomplex
A* of fixpoints of the action of G (i.e. Ad-equivariant element of A*). Section
3 describes the cohomology algebra of the Lie algebra .¥ of the gauge group.
After these prerequisites, Section 4 describes the cohomology of & with values
in A*, with the ensuing double complex and differential algebra structures. This
furnishes the framework of the BRS relations, to which section S is devoted, as
well as a framework for the construction of anomalies, described in section 7.
The cohomology algebra of % with values in local functionals of connection
one-forms — the receptable for anomalies — in defined in section 6.

This expository paper leaves aside important aspects to which we shall return
later, e.g.

(i) The additional analytical apparatus arising from the fact, realized in
physics, that the structure group G is a linear group (a group of matrices —
its Lie algebra L consisting then also of matrices). We here look at G as a general
Lie group, in the spirit of the general theory of smooth principal bundle.

(ii) The Chevalley cohomology of the gauge group Lie algebra . with values
in the local functionals of the potentials (resp., in a S(L)-valued De Rham com-
plex) has a version utilizing equivariant differential forms on the gauge group
& himself, with the operators stemming from the exterior derivative of & .

(iii) The homotopy formula should be generalized in two respects: one can
avoid the assumption of triviality of the principal bundle at hand by introducing
a background field. On the other hand, it is useful to consider multidimensional
generalizations of «transgression» involving more than one potential. This necessi-
tates the replacement of S(L) by an algebra of «graded symmetric» forms.

§1. THE GAUGE GROUP ¢4 OF A SMOOTH PRINCIPAL BUNDLE
P=(P*->M,G). ACTIONS OF G AND 4 ON THE REAL AND VECTOR-
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_VALUED DE RHAM ALGEBRAS (A* (P, R), d, -), (A*(P, S(L)), d, x), AND
(A*(P,L).d.[*]) '

Our basic object in this paper is a smooth principal bundle P : P* > M, with
basis M and (compact) structural Lie group G. We shall denote L the Lie algebra
of G, and write [u, v} for the Lie bracket of u, vE€ L. We denote by R the right
action of G on P:

(1.1) R:z=zs, sEG, zeP.
[1.1] The gauge group ¥ and its Lie algebra &

The gauge group ¥ is the group of automorphisms of P inducing the identity
on M. Specifically ¥ consists of the diffeomorphisms: P—+ P commuting with
all R, s € G, and mapping each fiber into itself. Since ¥ acts on the fiber, we
have

(1.2) ¥ (2) = 2g(2), zEP,
where g is a smooth map: P— G, ad -equivariant in the sense
(1.3) g(zs) = Ads~1g(2)) =57 'g(2)s, z€P, se€G,

this expressing commutativity of ¥ and R,. Relation (1.2) in fact establishesa
bijection between the elements ¥ of % and the smooth ad-equivariant maps
g :P-> G, whereby products and inverses in & are turned into pointwise
products, resp. inverse:

¥ og VY logl | g7 l(z)=g(2)!
(1.4 = , zeP.
¥ ogt WY ogg', (g8')2) =2(2)g'(2)

% is an «infinite dimensional Lie group» (a diffeological group in the sense of
Souriau [13]). As such it possesses a Lie algebra which we denote . We can
view £ as the set of smooth maps Q : P — L. Ad-equivariant in the sense:

(1.5) Q(zs) = Ad s H82(2)) = «s~1Q(2)s,» SEG

(here Ad s is the tangent map of ads = s - s~! at the unit of G). Lie bracket and
exponential are then obtained pointwise:

(1.6) [, Q'1(2) = [22(2), 2(z)], Q,.Q' e, zeP

(left hand side bracket in .%, right hand side bracket in L),

(1.7 e (2) = e Oe 2, z€P.

Setting, for y € €M), (Y Q)2) = Y (1 (2))R(z), 2 € &£, z € P, we thus obtain
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an action of € “(M) on % commuting with Lie-brackets; thus % is a Lie algebra
over € “(M).

[1.2]. The (real valued) De Rham complex (A*(P, R), d, ~) as a GCDA. Action
of the Lie algebra Z(P) on A*(P, R). Representation of G and 4 on A*(P, R)

We write A*(P, R) = ® AP(P, IR), with A*(P, IR) the set of smooth real-valued
differential p-forms on P. Denoting by Z (P) the Lie algebra of smooth vector
fields on P, we can view A*(P, IR) as the set of € “(P)-valued, alternate € ~(P)-
-linear p-forms on & (P) (€~(P) = A%P, R)). The wedge product -, exterior
derivative d Lie derivative L(¥) along £ € & (P) and inner product i(¥) by ¢ €

€ Z (P), are then defined as follows: for Ep £y - - ,‘;’p+q eXTP),ae A¥P, R),
B & A*(P, R) we have
(1.8) (- B)E, ..., 8, )=

1 1

=— — ) x@al - E By Eopeg)
p' q' UEEP +q
p . - -
(1.9 o)y - £ =) (D E {alky o B £ 0
i=0

+ ) T allE, £ B B B £)

O<i<j<p

(1.10) {LB)al(E), ... . E)=E@E, ..., E)—

P
_Z (X(El). “’Ei—l’ [E, Ei]’£i+l"' ’Ep)

i=1
GO,k )= bk, )
(1.11)
i(£)=0 on A%P R).

Through definitions (1.8), (1.9) (A*(P,R), d, *) now becomes a GCDA. And
definitions (1.10) and (1.11) determine an action (L, i) of the Lie algebra & (P)
on this GCDA. For a proof of these well known facts we refer e.g. to [1], Corol-
lary {10].

In addition to the previous structure the De Rham complex A*(P, R) is both
a G-space and a %-space. We obtain the action of s €G on A*(P,IR) as r(s) =
= RY, where R*a denotes the pull back of the differential form « by R,
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specifically (2):
(1.12) {re)a}(z, Z) = a(zs, R,a ,2)), z€EP, Z €T,

In this way G is represented in the zero grade automorphisms of the GCDA
(A*(P, R), d, ") (indeed r(s), s € G, commutes with d and with the wedge pro-
duct). The corresponding representation of L:

(1.13) 0(u) = il R* , uel,
d t=0 ¢

then arises as the composition

(1.14) 0(u)= L), uel,

with £ the principal field

(1.15) §/=L,. u uel,

(here L, z € P, is the map: G — P determined by
(1.16) Lzs=zs(=Rsz), zeP, seC.
From this and the convention

(1.17) i(u) = i(E"Y), uel,

we get an action (0, i) of the Lie algebra L on A*(P, R).
We now describe the representation p of 4 on A*(P, R): for ¥ € ¢, p(¥)
is obtained by pulling back the (inverse action of 4(3)

(1.18) p(Wa=¥"1a, T¥eg, aeA*P,R),

specifically we have (4)

(1.18a) {p(¥)a}(z, Z,) = a(¥~1(2), (\Il'l)*zZ,.), z€EP, Z e TZP.
We shall also denote p the accompanying representation of & :

d
(1.19) p(Q):d—| p(e'), Qek.
t

t=0

(®) Since both the right action and the pull back are product-inverting, we obtain indeed
a representation s - R.* of G on A*(P, R). For a definition in terms of sections are [1.5] below.

(®) Since ¥ acts on P on the left, we now have to pull back the inverse of ¥.

(4) For a definition in terms of sections, see [1,5] below.
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Specifically, one has, for ¥ = &%

(1.20) (¥, =R t(L dQ(z, -)

e 1R (¥ ze— (2 *e
% (resp. £ ) are thereby represented in the zero grade automorphisms (resp.
derivatives commuting with d) of the GCDA (A*(P,IR), d, ~) (immediate conse-
quence of the commutativity of the pull back (1.18) with d and with the wedge
product). Furthermore, since ¥ € 4 commutes with Rs, s € G, the representa-
tions of G and 4 on A*(P, R) commute.

So much about real-valued differential forms on P. We now describe the
differential forms on P with values in L, or more generally in symmetric tensors
over L.

[1.3]. The S(L)-valued De Rham complex (A*(P,S(L)),d, x) as GCDA. Re-
presentations of G and < on A*(P, S(L))
We denote by S(L) the symmetric algebra over L:

S(Ly= o §.(L)
keN
(1.2
_ ygvk _ ®k —
SLy=L"=S§L"" Sp(L) =R
equipped with the symmetric product
(1.21a) Fof'=S v,  [ESU),f eS/L).

Here S,. k> 0 the idempotent projecting L®* onto the symmetric tensors — vani-
shing on the fef' —(—1)*'f'e®f, i,j€N,i+j=k. And S,=id,. Note that
the dual SF(L) can be identified with the set of symmetric k-linear forms P
on L (5) by writing

(1.22) P(ul,...,uk)=P(u1v...vuk), us,...,ukeL.

A subset of SF(L) of particular interest is the subset I, (L) of Ad-invariant sym-
metric k-forms characterized by

(1.23) P(Ad s(ul), ..., Ad s(uk)) = P(ul, e, uk), seG, Up U € L
or equivalently

n
(1.23a) Z Pluy, ... u_y, fw,ulu . ...,uD=0,uu,...,u, €L.

i=1

(5) The latter are in tumn one-to-one with the polynomials of order k on L, the passage from
k-forms to polynomials arising by restriction to the diagonal, and inversely by polarization.
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Now we consider the S(L)-valued De Rham complex of P:
(1.24) A*(P,S(L)) = Gz AP(P, S(L))
with AP(P, S(L)) the set of S(L)-valued smooth differential forms on P, alterna-
tively
(1.25) AP(P, S(L)) = S(L) ® AP(P, R)
with the identification
T=foae(r(§,.., Sp) = a(f,.., Ep) f, forall £,.., Ep
(1.25a)
TEANP(P,S(L)), aeNP,R), feSL).
Of course AP(P, S(L)) decomposes into «homogeneous components» (6):

AP(P, S(L)) = ke$]N AP(P, S(L))

(1.26)
AR(P, S(L)) = AP(P, S, (L)) = AP(P, R) ® S, (L)

the term k = O arising from our convention S,(L) = IR, which implies
(1.27) AB(P, S(L)) = AP(P, R)

(incorporating in this way the real valued De Rham complex has a convenient
unifying virtue).

On A*(P, S(L)) we now define (7)
— a bilinear product x by requiring

a,a €AP, R)
(1.28) (fea)yx(f'ea)=(f~fHela-~a),
L esi)
— operators, d, i(1) 8(u), u € L as follows:

(1.29) d =idg,, ®d

(6) We accordingly write AX(P,S(L)) = 0’; AR, S(LY).

(") Note that these definitions extend d, i(w) and p(¥) by requiring them to be trivial
on S(L)=S(L)®1, 1 the unit function on P. In contrast #(«) and r(s) are obtained from
tensorizing with the adjoint representation. This will result in a departure from a «Lie action
situationy, see (ii) below.
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(1.30) i(u) =idg ,, ®i(u)

S(L)

(1.31) O(u) = de(L) @0(u)+ Adue idAp(P' ®)

(with the following definition of Ad u on S(L)

k

Adu(u, ~..-u)= Z Uy~ vy fu,ul - U g~ v Uy
(1.32) !

Upyeor, U, € L
— actions r and p of G, resp. 7, as follows:
(1.33) r(s)=Ads®R}, sel
(with the following definition of Ad s on S(L):

| Ads(u)~ ...~ Ads(u)), Uppe, U € L)
(1.34) Ads(u,~..-u) =
Ads=id on SO(L)

(1.35) p(¥) = idg, ® p(¥)

the latter yielding as usual

(1.36) p() = -(-1- | p(e™), Qe .
LR

We note that these definitions reduce on Ag‘ (P, S(L)) to our former definitions
(1.8), (1.9), (1.13), (1.17), (1.12) and (1.18), in accordance with embedding
(1.27).

The foregoing definitions now imply the following:

(i) A*(P,S(L)),d,x) is a GCDA whose sub-GCDA (AF(P,S(L),d, x) is

isomorphic with (A*(P, R), d, -).

(ii) The pair (8,i) behaves as an action of X (P) on this GCDA, but for the
fact that one has (8)

(1.37) i(wd + di(u) = ids(L) ®@0(u), (=68u)—Adu ®idAP(P, IR)), uel.

(® In other terms, with the replacement a— A*(P, S(L)), the product - - the product x,
one has properties (A.1) through (A.16) in Appendix A except property (A.14) to be replaced
by (1.37).



A DIFFERENTIAL GEOMETRIC SETTING FOR BRS TRANSFORMATIONS, ETC. 445

(iii) 7 as defined in (1.33) is a representation of G on A*(P,S(L)) by zero-
-grade automorphisms of the latter as a GCDA moreover such that the accompa-
nying representation of L coincides with 8 (9):

(1.38) i | re™)=6w, uel
d t=0
(iv) p as defined in (1.35) (resp. (1.36)) is a representation of 4 (resp. £)
on A*(P,S(L)) by zero grade automorphisms of the latter as a GCDA (resp.
by derivations of (A*(P, S(L)), ~) commuting with d)
(v) The representations r and p commute (10):

(1.39) p(W)r(s) =r(s) p(P), seCG, Ye¥,
accordingly
(1.40) p(82) B(u) = B(u) p(R2), uel, Qe¥.

These facts are classical. For a proof of (i) we refer to, e.g. [1, Theorem 1.8] with
the replacement L—> Z(P), A= €~(P), V>S(L)e€~(P), p(¥)~> idS(L) ®f,
d s d, - = x. The proof of (ii) is as follows: denote Ol(u), resp. 02(u) the first,
resp. second term r.h.s. of (1.31): (01, i) is a bona fide action of the Lie algebra
L on the GCDA A*(P, S(P)), obtained by tensoring by ids(L) the action (0, i) of
L on A*(P, R). We examine the changes in (A.9), (A.12) through (A.16) brought
about by the change 6, > 8, + 0,. Since 0,(u) is a zero grade derivation, (A.9)
stays unchanged. Since 01, and 0, are mutually commuting representation of
the Lie algebra L, (A.12) is maintained.

We check (A.13), from which (A.16) follows: we have, from (1.30), (1.31)

(141 0()i(v) —i(v)6(u) = idg ;, &{(6,(u) i(v) — i(V)6(w)} =
= idsu,) ®i([u, v]) = i([u, v)).
We examine (A.14): we have, from (1.21), (1.30):
(1.42) i(u)d + di(u) = idg @ ({(w)d + di(w)) =
= ids(L)ts 6(w).

Finally we have from (1.29), (1.31)

(®) Coherent with the fact that the 6(u) are derivations commuting with d (cf. A.13)
and (A.15).

(19) We could thus consider G x & 3 (s, ¥) - r(s) p(¥) as a representation of the direct
product of the groups G and ¥4 .
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(1.43) d0() — 6(u)d.= idg ;, ®(dO(u) — B(u)d) = 0

hence (A.15) stays unchanged.

Remark. Defining L(£) and i(§), £ € 2 (P) on A*(P, S(L)) as

(1.44) L(§) = idg , ®L(£)

(1.45) i(§) = idg ) @ i()

we get an action of the Lie algebra & (M) on the GCDA A*(P, S(L)) yielding

the above action (01, i) by composition with & in (1.15).

[1.4]. Our next concem is the «descent» from S, (L)-valued to real differential
forms by means of elements of S¥(L). Consider a «polynomial» P € Sg(L) of
order k: taking its covalue with a p-form 7 € A,f(P, S(L)):

(1.46) P(1) (51,..., Ep)(z) = P(T(El,..., Ep)(z)), Eprens Epe XP), zeP
(in other terms:
(1.46a) P(fea)=P(fla, a€AP(P,IR), f€& S (L))

one gets an element of AP(P, IR). We can thus view the dual S,:‘(L) of Sk(L) as
providing linear maps

(1.47) P:AB(P, S(L)) D 7~ P(1) € AL(P, R),

with the properties

(1.48) Pod=doP
(1.49) Poi(u)=i(u)oP, uel
(1.50) Por(s)=r(s)oPoAds, seEG.

Proof. (1.48), (1.49) follow from (1.46), (1.29), (1.30):
(1.51) Pod(fea) = P(feda) = P(f)da =
=d(P(flo)=doP(foa)

(1.52) Poi(u)(foa) = P(f®i(u)a) = P(f)i(u)o =

= i(u)(P(f)a) =i(u) o P(fea)

On the other hand, (1.50) follows from (1.33), (1.46) (cf. (1.23))
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(1.53) Por(s)(fea) = P(Ads(f)® R}a) =
=P(Ads(f))oR}a=
= R¥*P(Ads(f)) -a=
=r(s)(Po Ads)(fed).

The 1-tensor part A*(P, L) of A*(P,S(L)) deserves a special examination,
since it inherits from the Lie bracket of L a graded Lie algebra structure (essen-
tial for expressing the BRS relations).

[1.5]. The L-valued De Rham complex (A*(P,L), d, [-]) asa DGL

Recalling the identification
AR(P,S(L)) = AP(P,L) = L ® AP(P, R)
(1.54) >\=u®ae)\(.§1,...,Ep)=a(£l,...,g’p)u
NEAPP, L), a € AP(P,R), &, ..., §,€ Z(P)

we define as follows the Schouten product [~] on A*(P, L): for N\E AP(P, L),

ueAq(P,L),p,qelN,El,...,’g’p+q€Lweset
):

(1.55) N ulEy .k

Pt+q

1

1
i e; XOMNE - Eo) B oty - - -+ Eagpag)
IS 2p+gq

where [ , ]s.h.s. denotes a Lie bracket in L. Alternative specification:
o, BEA*P, R)
(1.55a) [uea-vefl=I[uv]le(-p),
u,v, €L

With this definition, we have that (A*(P, L), d, [~ ) is a DGL. Moreover r, resp.
p, restricted to A*(P, L) are commuting representations of the group G, resp.
&4, by zero-grade automorphisms of (A¥(P, L),d,[~]). Correlatively, 9, resp.,
p are commuting representations of the Lie algebras L, resp. & by zero grade
derivations of (A*,[~]) commuting with d. These facts are classical. A proof
of the DGL property of (A*(P,L),d,[~]) can be inferred from [1, Theorem
1.8] with the replacement L—> Z (P), A> €~(P), V> ¥€~(P) ®L, p({)=t®
®id,, dp—> d, ‘= [-]. We know from the preceding paragraph that r(s) and
p(¥), se G, ¥e %, commute with d. Moreover (1.48a) shows that they commu- -
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te with the Schouten product: indeed we saw that R* and p(¥) acting on
A*(P,IR) commute with the wedge product. And Ads commutes with the Lie
bracket of L:

(1.56) [Ad s(u), Ads(v)] = Ad s([u, v]), seG, u,vel.

[1.6]). The groups G and ¥ as acting on sections

We mentioned that A*(P, IR) can be considered as the set of & “(P)-valued,
alternate, ¢ ~(P)-linear p-forms on 4 (P) and formulated the definitions (1.8)
through (1.11) and (1.14), (1.17) in this context. We here give for completeness
the corresponding definitions of the representations r and p. Letting G and
% act on ¥ (P) (11) as follows:

(1.57) {ris)&}, = RY,
(1.58) . {P(‘I’)E}z= (¥~ 1)*qz(z)EW(z)' Yey

the definitions (1.33), (1.35) are alternatively phrased as follows: one has, for
TEAP(P,S(L))

& I, sEG
zs

(1.333) r(s)r (El, cen, Ep) = Ad s(T(r(s)El, - ,r(s)Ep) oRs), seG
(1.35a) pDE, .. E) =D, ..., p(W)EHo¥ Y. TeF
It then follows from

(1.59) r(s)£“=EAdr1(u)’ uel, seG

that one has

(1.60) r(s)i(u) = i(Ad s(u)) r(s), ucl, seq.

§2. THE DIFFERENTIAL SUBALGEBRAS. (A*.,d,-), (Af,d,x) AND
(Af,d,["]) OF REAL INVARIANT, RESP. S(L) AND L-VALUED AD-
-EQUIVARIANT DIFFERENTIAL FORMS

The fixed point set, for the action of G, of the differential algebras of the
last sections, are differential subalgebras of direct relevance for gauge-field
theory. We devote this section to their description.

[2.1]. The GCDA (A*, d, x) of Ad-equivariant elements ot A*(P, S(L))

We say that 7 € A*(P, S(L)) is Ad-equivariant whenever one has

(11) On the right.
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Rrr= Ads~!r forall s€G
(2.1
ie. 7(z5,Rpu,Z)=Ads '7(2,2), s€G, z€P, Z,€Tr.
This is tantamount to requiring that
(2.1a) rs)r=71 forall s€C
(cf. 1.33), or else, if G is connected (12)
(2.1b) 0(u)r=0 forall uel.

Note that, since Ad acts trivially on the zero degree part AS‘(P, S(L)) = A*(P, R),
condition (2.1) restricted to the latter simply means invariance of the real valued
form a € A*(P, R):

Rs*a =a forall s€C
(2.1a)
. P
i.e. afzs, Rg,.zZl.) =a(z,Z), z€P, Z €T, s€6.

We denote by A* (resp. AP, Ag, A,f, D, k € N) the respective subsets of Ad-
equivariant forms in A*(P,S(L)) (resp. in AP(P,S(L)), A*(P, Sk(L)),
AP(P, 5, (L)).

Since the r(s), s€ G, are zero-grade automorphisms of the GCDA
(A*(P, L), d, x) commuting with all p(¥), ¥ €%, and leaving the degree k
invariant, we have that A* decomposes as

] *=—0AP =0 A¥ = ® AP
2.1 A 4 ° A7 p,kAk

and is a sub-GCDA of (A*(P, S(L)), d, x) stable under the action p of 4 thus
also of & (as well as every component of A,f) and containing A(’)" as a sub-GCDA
isomorphic to the GCDA (A*(P,R), d, -).

We note that Ad-invariance allows to simplify the explicit expression of
p(¥). First note that, due to (1.35), p(¥)7 is given for 7 € AP(P, S(L)) by the
same algorithm as for a real valued differential from (cf. 1.13a):

(2.3) (P(IIN(, Z) =N¥ @), (¥ D, Z), z€P, ZeTf
with (\Il‘l)*z given by (1.20) for ¥ = e*, Q € &. Plugging (1.20) in (2.3) and

(12) Generally (2.1b) amounts to requiring (2.1a) for all s € G within the connected com-
ponent of the identity.
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using the Ad-equivariance property (2.1) now yields the following explicit form
of p(§2) on A*:

(")) (2, 2) =
(2.4) = Ad e"¥Nr(z, Z, — (L), Ad e "D (dS2z, Z)))

TEA*, Qe¥, zeP, ZeTf

leading to
POz, Z,,..., Z) = [Q2),7(2. 2, ..., Z)] —
p
(2.5) =) 1@ 2.2 (L),,dR02.2), 2, -, Z)
i=1

TEA*, Qe¥, zeP, ZeTf

(for 7€ A, one should set Ad e’ =id in (2.4) and omit the first term r.h.s
of (2.5)). Note that (2.4) reduces to

P21 (2. Z) = Ad eI (x(z, Z,))
(2.4b)
TEhA*, Qe¥, zeP, ZeTl

on the subset hA* C A* of horizontal Ad-equivariant differential forms, singled
out as
hA* = @ hAP
p.k

(2.6)
; i(u)r=0 forall uel)

3

hA,’: =(r€ AP

(equivalently, the Ad-equivariant 7€ A* is horizontal whenever it vanishes as
soon as one of its arguments is vertical i.e. tangent to the fiber). hA* is a graded
commutative subalgebra of A* preserved by the action of €4 as follows from
(2.4b). Warning: A* is not a sub-GCDA of A*, since not stable under the exterior
derivative d. However

[2.2). The set hA(;" of real valued horizontal G-invariant differential forms
is a sub-GCDA of (A(’)", d, ~) stable under the action of 4 and isomorphic as
a GCDA to the real-valued De Rham complex A*(M,R),d, *) on the base.
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We recall that the isomorphism is given as follows (13)
h€eAlD a oo € AP(M, R)
o > a=nm*a

2.7
a—>a a(x,X)=a(z,Z)

(any ze€P and Z € T;P with 7(2)=x, 7., Z=X)

The fact that hd4is a sub-GCDA of A, is seen as follows: remembering that
(6,17) is an action of the Lie algebra L on A*(P, R), A0= uQL ker u is closed
for the wedge product due to the derivation property of i(¥), u € L; and closed
for d, because, for a € A° (cf. Appendix A, (A.14)) i(wW)da = — di(uw)a + §(W)a =
= 0.

[2.3]. The DGL (Af.d,["]) of Ad-equivariant L-valued differential forms

Since the r(s),s € G, are zero-grade automorphisms of the DGL(A*(P, L), d, [ ])
commuting with all p(¥), ¥ €%, we have that 4, is a sub-DGL of
(A*(P, L), d, (")) stable under the action p of 4 (thus also of &) (14). The
importance of A4, lies in the fact that it contains as subset both £ and the set
A of connection one-forms on P. Our identification of % with the smooth
Ad-equivariant functions on P (cf. (1.5)) is now expressed as

(2.8) L=A9.

We recall, on the other hand, that the set A of eonnection one-forms on P is
the subset of aeAll singled out by the following specification of the value
of a on vertical vectors:

(2.9) a(z,Z2y=L7},Z, zeP, ZeT? with n,,Z=0
alternatively
(2.923) a(z, 0(w)) = u, uel.

We recall that A is an affine subspace of Al1 modelled on hAl1 (15). The curvature

(13) One has da<da’ and «, - a, ©a) " a, because the pull back 7* commutes with d
and with the wedge product.

(14) Note however that the replacement of (A.14) by (1.37) prevent hd X = (1 €A i(u)1 =
=0 for all u€ L) — hence in particular A4} — to be stable under d: k4 ¥ is merely closed
for the product [~] (and h4* for the product x).

(5) ie.a,d S, A, N ER,A+N =1limplyAd + N'a' =ajandd’ —z € a.
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ofais
1
(2.10) F”=da+-—2—[a‘a],

it is an element of Alz. The exterior covariant derivation determined by a is the
map D?: A - A given by (1)

(2.1D) DX =dX + [a, 7], A€ AT,

We state for further reference the expression of (2.5) for r=a€ A and 7=
=Q'€ :wehave

(2.12) p()a=—[a~-Q2]—dQ, QLed, acA
(where we used (2.9)) and
(2.13) - () =[2 - Q], Qe

We end up this section with a remark on the «descent» by means of the P €
€ S*(L) (cf. [1,4]): using (1.47) we see that, if P is Ad-equivariant, i.e. if P -
-Ads =P,s € G, Pcommutes withr(s),s€ G:forPe Ik(S) we have

2.14) Por(s)=r(s)eoP

hence P leaves A* invariant.

§3. THE COHOMOLOGY ALGEBRA (¢*, 8, ") OF &

Constructing the cohomology algebra of a Lie algebra is a standard procedure
which can be applied to any Lie algebra over an arbitrary abelian ring. We now
describe this construction in the case where we need it: that of the Lie algebra
%, taken a Lie algebra over ¢ ~(M). We noted in [1.1] that ,?:A? is a Lie
algebra over ¥ ~(M) acting by pointwise multiplication — abstractly the multi-
plication of elements ofAP by those of A%, with the following identification of
% =(M) with A

a'(z)=a(nz), z€P
(3.1 E="M)y>a=d €A iff
ie. d(x)=a(z), z€P, mz=x

We now consider the direct sum

(16) Unlike d, D% a € a, leaves hA | stable.
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*= & Po
3.2) d aemd’

where @ is the set of alternate € ~(M)-valued a-formsy (17) on L (®%= ¥=(M))

iocal in the following sense: the forms ¢ are of the type:
(3.5 ¢ (2., )€ Lx ... (atimes) ... x Z > 6(D, 2 D Q)eE €M)

with 8 a €~ (M)-valued € ~(M)-linear a-forms on & and the D,i=1,...,¢q
linear differential operators: . - .%. * becomes a GCDA (®*, 8, -) if equipped
with the wedge product

@ Qs R, ) =
1 1

1

(3.6) =— — ) X0y LIV Ry, s Do s )
a! B' o€2a+6
Q... Slwﬁe £

and the coboundary operator (of Lie algebra cohomology):

80y )= ) (-1 09y, ], e, Ry R, R
0<i<j<a
G.7
Q

0 Qp c¥
§=0 on ®°
Explicitly, § is a linear operator of grade 1 fulﬁlliné
(3.8) 82=0
(3.9 (o - V) =(6p) " ¥ +(—1)% - 8y, pEP, Yyed*

For the proof of these classical facts we refer to, e.g. [1, Corollary 9] (case 4 =
=V=¢"M).

§4. COHOMOLOGY OF £ RELATIVE TO THE REPRESENTATION SPACES
Af. THE DOUBLE COMPLEXES (A**,d,s)(Af*, D, s). THE GCDAs (*A, A, x),
(*Dg A X), (*A, A, %), (*Ag, A, ). THEDGLs (%A, A, [*]), (*A,, A, [*])

Having at hand all prerequisites, we now come to our subject proper, a combi-

(*") The subset of those ¢ obtained with operators D; of degree zero is a sub-GCDA (93,
8’ ‘) Of (¢" 87 A)‘
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nation of the structures in sections 2 and 3. The matching is obtained by a cano-
nical construction available whenever one has a representation p of a Lie algebra
(over some abelian ring) on a module over this ring. In our case the Lie algebra is
&, the ring €~ (M), the € ~(M)-module A*: and the representation is p (direct
sum of the restrictions of p to the component A,f). The additional structure
of A* resp. Af as GCDAs (and of A} as a DGL) produces interesting extra
features: products x and [*], a double complex and associated total complex,
GCDA and GDL structures, the BRS transformations, etc. We now describe the
«Chevalley cohomology» which is «local» by construction.

From here on we use the shorthands A* = A*(P, S(L)), AP = AP(P, S(L)),
Alf = AP(P, S, (L)) (in particular Al = AP(P, R), AP = AP(P, L)); and the cor-
responding shorthands for A replaced by A.

[4.1]. The double complex (A**, 4, §)
Consider the tensor product over € “(M) = AJ) (18)
4.1) A** = A*¥ @ d*,
doubly graded as the direct sum of subspaces
(4.2) AP =AP® d* a,pEN
themselves splitting into subspaces
(4.3) A= Af © > (hence A** = ?CB(A;:* = pG,Ba AP @ ®*))
(o is the «ghost numbery, p the degree of form, k the tensor type). The elements

of A** are interpreted as A*-valued multilinear forms on % (19), according to
the identification

UeN**
U(‘Qv“"ﬂa) = gp(ﬂl,...,Qa)'r
4.4 U=10¢p%» , (g E DY,
@4 v forall &,.,2 € £
TE A*

We now turn A** into a double complex with horizontal differential d and

(18) All the subsequent tensor products are over ¥ “(M). It is tempting at this point to
work with tensorproducts over ¢ ~(M). However, one can, alternatively consider the purely
algebraic theory where tensor products are over €. The subsequent results are then maintained,
with appropriate replacements of ¢ (M) by €. On the other hand the present construction can
be made replacing ¢* by ¢F (see footnote 16)) with maintenance of all results.

(19 In other terms A** is identified with the A*-valued Grassmann space over the algebraic
dual L* of L.
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vertical differential s:

o ghost number

(4.5) s T_)
d

- p degree of form
This arises by setting
UeA**
(4.6) (dUX8,,....8 ) = A(U(K,,....R2)),
Q,,..Q,e¥

and on the other hand (20)

14
D Qs ) == P Y~ = () Uy, Ry, 2
i=0

4.7 + Z (_ 1)i+i U<[Ql’ Q}], QO,...,Q’.,...,Q].,,..,QQ)

0<i<j<a

Uen*, a>1; 9.0 ¥

(N2 =—p(R), AeA*®

(in fact sU=—(—1)P 6p U, with Sp the coboundary operator of the cohomology
of X relative to the representation space A*). With these definitions A** (in
fact each A,’:*, k € N, acquires the structure of a double complex i.e., we have

d2=0
(4.8) s2=0
sd+ds=0

The corresponding fotal complex (*AA, A) is defined as follows: the (single)
total grading is

(*0) The minus sign 1.h.s. of (4.1) is to ensure the traditional minus signs r.h.s. of the B.R.S.
relations cf. Section 5 below.
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A (= A**) = o™
n

(4.9)
with "A= & AP*

a+p=n

and the total derivative is

4.10) A=d+s
fulfilling
(4.8a) A*=0

(note that d, s and A are of grade 1 for the total grading). Proof of these facts:
(4.8): ¢*= d*®id,,=0. Last line (4.8): the coboundary operator §  commutes
with d since acting «internally» (on the arguments of U) whilst d acts «external-
ly» (on the value of U) — the factor —(— 1)? then tums commutation into
anticommutation. Second line (4.8): s is known to be a coboundary operator:
for a proof we refer to e.g. [1, Corollary 9].

[4.2]. The GCDAs (A*, A, x) and (A¥, A, x)
We now introduce a bilinear product x on A**. We set
TEA* T ENF
(4.11) (ro)x ('@ ) = (— D - (rx T)e(p " ¢),
pEA ¢ €D
alternatively

(Ux VR, ) =

11
@lla) { =D — — Y X (@O U, R0 X V(@yiy P )
a! B! 0€T gy,
Ueh**, Ven”, Q.9 .

We now have that (*A, A, x) is a GCDA with (*AO, A, x) as a sub-GCDA (21).
This is proven as follows: the fact that (¥*A, x) is a graded-commutative algebra
is proven in Appendix A, cf. (A.30), (A.31). We already proved that A is of grade
1 and square zero. Now d and s, and hence A, are derivatives for the product x.

(21) *A,is AZ* equipped with the total grading (4.9).
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We check that for d: given U€ AP%, Ve A9, Q,..., Qu+ﬂ € ¥ we have,
from (4.6), since d is a graded derivation for x:

(4.12) d(Ux V)(8,... 82, , )=

11
=D — — ) x(0)

1 B!
a! B! 0€T 4

(AU, 82, X (V(S2 Q +

o(a+1y"" Ta(a+ B
+ (= DP U, 2,0 X A V(R 1@y o) =
= (D™ (~1D*UAUx V)€, )+ DPH @ YU AV, 2, )

The .proof for s is obtained as follows invoking Theorem [1.8] (vi) of [1]:
denoting by V the product on A** obtained by discarding the factor (— 1)*
r.h.s. of definition (4.12a), the fact that p(R2), 2 € &, is a derivation of (A*, x)
implies that 5p is a derivation for the product V. We then have, for U €AP%,
Vend?

(4.13) SUxV)=—(—1PHI*a5 (UV V)=
= — (= 1PHITAE DV V+ (= 1DUV S, V)=
= — (= DAY T V 4 (— 1P+ e+eayy sV =
=sUx V+(=1)P*eUxsV.

Note that, since d and s preserve the tensor type, each (A,’:*, d, 5) is a double
complex with total complex (*Ak, b). Moreover (A, A, x) is a sub-GCDA
of (*A\, A, x). The fact that *A is closed for the product x stems from the fact
that A(’)" is closed for x. And *A\ is stable under A (in fact under d and s) because
the latter preserve the tensor type.

[4.3). The DGL (*A,, A, [*]))

The case k=1 deserves special attention. We define a bilinear product on
A;"* be setting

NEA* pe N
4.14) ey poy]=( DN -ule(p-¥)
peSde Yy EP*

equivalently
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1 1

)= (=DM — — Y x(0)

(4~ BUQ,.. 2, ,, T

Ueza+ﬁ

(4.14a)
[A(2, 12,0 " B2y, 1y 5]

AENT BEAT, Q.0 , €L

Then (*Al, A, [*]) becomes a DGL (22).

Proof. The fact that (*A |, [*]) is a graded Lie algebra is shown in Appendix A
(iv) cf. (A34). A preserves A and is of square zero and total grade 1. On the
other hand d and s, and thus A, acts as derivations of *17\1 for the product [~].
For d this follows from [A.2] (ii) in Appendix A. The proof for s is again obtained
by invoking Theorem [1.8] (vi) of [1]: denoting by O the product on /A obtained
by discarding the factor (— 1)*? r.hs. of definition (4.14a), the fact that p(£2),
Qe &Lis a derivation of (Af, "D implies that 8 is a derivation of Af. We
then have, for A € AZ*, B e AY”,

(4.15) s[A“B]=—(-—1)p+q+“"6p(A 0OB)=
=— (=PI A0B+(— 1408, V) =
=—(— 1)(04+1)Q(SA)DB +(— 1)p+a+an 0]sB =
=[sA~Bl+(—1P*%4 - sB).

[4.4]. Action r of G on A** = */A_ The operators 8 (u) and i(u)), u € L, onA**,
Commutation and derivation properties

On A** = A* e d*(=*A) we define the action r of the group G, and the
operators 8(u), r(u), u € L, by tensoring with id.:

(4.16) r(g) =r(g ®idg,, gEC

(4.17) 0(u) =0(u) ®id,.. uel

(4.18) i(w) = i(w) ®id,,. uel

alternatively, for UE A**, Q,, ..., Q2 €Y

(4.16a) r(@UNQ,. ..., 2) =r(@{U®, ..., )}
(4.17a) {0@)UKQ,, ..., 2) =0 {U®,, ..., Q)

22) *\ is A** equipped with the total grading (4.9).
1 1 equipp
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(4.18a) ) UNQ,, ..., Q) = iU, ..., Q)

(note that r(g), g € G, preserves the ghost number, the degree of the form, and
the tensor type).
We then have the following commutation rules

(4.19) i(ws +si(u)=0, u€L

(4.20) 0(w)s —s O(u) =0, uel

(4.21) r(g)s—sr(g)=0, g€6C

(4.22) r(g)d—dr(g) =0, gEG

(4.23) r(g)A—Ar(g)=0, g€G

(4.24) i(wi) +i)iw) =0, u,vel

(4.25) 0(u)0(v) — 0 (V)0 (u) = 8([u, v), uvel
(4.26) B(u)i(v) —i(W)8(u) = i([u,v]), wu,veL
(4.27) 0(w)d—do(u)=0, u€elL

(4.28) 0(w)i(w) —i(u)6(u) =0, uel

(4.29) i(w)d + d i) = idg,, ®0(w) ®id,,

WA+ Ai(uw)=0(w)—Adu @idAo ® id -
Moreover, we have ‘

d
(4.30) o | re™=0), wuel,
t

t+0

and the following invariance, resp. derivation properties in (*{\, x):

(43D r(e{Ux Vi={r(eUlx{r(g)V}, U VE *A, ge€s
(4.32) 0 Ux V}={0)U}x V+ Ux8w)V, UVE*A uel,
(4.33) iW{UxVi={iUxV+(D"Uxi()V, Ue™\, VE*A, ucl

and in (*A,, [-D:
(4.34) r(g)[A~ Bl=[r(g)A~r(g)B], A Be*A, ge€G
(4.3%) O(w)[A-~Bl=[0(w)A“Bl+[A~0(w)B}, A, B&€*A, uel

(4.36) i(W)A~B)l=[i(w)A*~Bl+ (- 1D"[A~i(u)B], A€\, BE*N, ne L.
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Properties (4.19), (4.20) and (4.21) are due to the fact that s acts «internally »
whilst i(u), 8(u) and r(g) act «externally» (23). Property (4.22) through (4.29)
follow from the corresponding properties in *A, resp. */\, via tensoring with
id,« (immediate from [1.3] (ii), (iii)). We check the derivation properties (in
particular the fact that properties (4.33), (4.35) hold w.r.t. the total grading).
With U=709p€EANPed* U =709 €A’ ©®> we have Ux U'=(—1)*"
(rx7)®(p~¢'), hence

(4.37) 0)(Ux U")=(- 1)"”'{(0 W) xt' +7x8Wrt'}e(p - )=
={(0WT) e vix (T'a ) +(T o) x {(B(u)T) @ )=
=0WUx U+ Ux) U

and

(4.38) iU x U) == DT x 1’ + (= 1DP1rxi@)r} e (e - )=
=(- PPl re ¢ x{T @ ¢+
+ (=P P e+ D(r g o) x{i(u)p @'} =
=i@Ux U+ (— 1P Uxi(u) U’

and with A=AepEAPe¢* A'=Neoy EAP® ¢*, thus Ax A =(—1)0F
A xN)e (v v,

(4.39) 84~ A'l= (= 1)*P{[0)N - N+ [N - (BN T} e (¢~ ¢)) =
=[8WAep-"Neyl+Aee -0\ e )=
=[0w)A~A"1+[A“0(w)A']

and

(4.40) i@[A*A']=(DP{[@X-N]+(DPA - i@XN]} (- ¢) =

= (=D PliAep - Ne ']+ (- 1)PHPre? Do p i(u)N e ']
=[i()A~A T+ DP 24 ~i(wA'].

[4.5]. The Ad-equivariant double complex (Af*, d,s), GCDAs (*A\, A, x) and
(*A, A, x) and DGL (*A, A, [*]).

With p, o, k € IN we now consider the fixpoints sets

(23) This implies commutativity of i(u), 8(u) and r(g) with 8, turned into anticommutativi-
ty for the odd grade i(u) by passing from 8, to s.



A DIFFERENTIAL GEOMETRIC SETTING FOR BRS TRANSFORMATIONS, ETC. 461

(4.41) Pe={Uec AR r(e)U=U forall g€G}=
= AP ® o

equivalently, for G connected,

(4.41a) Are={Uec AR, 0(u)U=0 forall uelL})

with the bigraded spaces

(4.42) Arf*= o A® A*r= @ pPC
p,a p,a

(AP = ® AP) and the graded spaces

(4.43) A =0"A, *FA=0"p
n n

where 7 is the «total grading»

(4.44) "A,=_ 8 AN, "A=_ © AP
Pt+a=n pt+a=n

We now have that ( A;:*, d, ), k € Nresp. ( A**,d, s) aresub-double complexes
of the double complexes (AF*,d,s) resp. (A**,d,s); that (*A, A, x), resp.
(*ﬂ\o, A, x) are sub-GCDAs of the GCDAs (*AA, A, %), resp. (g, A, %), and that
(* Al, A ) is a sub-DGL of the DGL (*A, A, [*]). These facts immediately
result from the commutation of r(g) and d, 6 cf. (4.21), (4.22)); the commuta-
tion of r(g) and A, x (cf. (4.23), (4.31)); and the additional commutation of
r(g) with [~] (cf. (4.34)), g € G. Moreover, with hAg‘* the set of invariant
horizontal real differential forms on P:

hAS* = © hPEe

p,a
(4.45)
h Ag“ =(F€ AP; iwF=0 forall uel)
and
(4.46) "A,=_ © PAB©

we have that (h AJ*, d, s) is a sub-bicomplex of (Ag*, d, 5) and (h* A, A, %)
is a sub-GCDA of ( AO, A, x) (this follows from the facts that & A(’)"* is stable
under both s and d, owing to (4.19) and (4.29) (remember that 0(«) vanishes
on A**).

Remark. On A** we have also an action (O, I) of the Lie algebra £, given as
follows: for UEA**, 2, Q, .. ., Q}' e ¥:
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(4.47) BEO@UKL,,..2) =

= (DU, 2} + Z U 1, [2,9,), 92,1 2)
i=1

(4.48) {I(Q) U}(Ql,...,val) = U(Q, ﬂl,...,QpAl).
For a proof of these facts see e.g. [1] Theorem [1.8] (i) (iii).

[4.6]. Alternative definition of (*AA, A, %)

We now describe a different way of looking at the C-tensor product version of
*/A (cf. footnote (18)) which has also some conceptual interest.

Since A* was defined as the tensor product S(L) ® Ag, the space *AA is the double
tensor product (24)

*ZA=S(L)?A3‘?¢*

(4.49) v
D= S (L) 8 AD® B°

on which the product x is defined as follows: we have

(4.50) (fenep)x(getoy)=(—D*"(f-gpen Help V),
f,.g€S)
neA;, E€A]
pEDP* YEP*.

This can be written alternatively

(4.50a) {femey)ix(gelpoy)=(~ge{(neyp) (to¥)

where the wedge product of the r.h.s. is the skew product of the GCDAs *A,
and ®*, naturally included in *A as *A (cf. (A.17) in Appendix A). We could
thus have constructed (*/A, A,x) be assembling the algebras (S(L), ~), (A}, d, *)
and (®*, 8, ~) as follows: first build the skew tensor product (*1\0, ~) of graded
commutative algebras

4.51) *Ay=Aj e D,

with corresponding grading

(%) Written without parentheses according to associativity of tensor product.
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(4.52) "Ny= ® AP g ¢
p+a=n ("‘”(M)

and skew tensor product (25)

ne A*, te Ag
(4.53) mev)*EeP)=(-D"n-§e(s- V)

peE P Yyed*
then build the tensor product

(4.54) *A=S(L)8 A,

with product

f,e€eSL)
(4.55) (feS)x(gel)=(f~-g)e(S- 1),

S,Te*A,

We obtain in this way the graded commutative algebra (*/A,*) embedded as
such in the graded commutative algebra (* A, x). We recapitulate our operators:
they are all totally split tensorially

(4.56) r(s)=Ads ®R*®id,., sEG

(4.57) p(¥) =idg,, ®p(¥) ®idye, VEF

(4.58) P =idg, @) @ id,., NEL

(4.59) d=idg,, ®d ®idg.

(4.60) so=idg, @ (— 1P @b

(4.61) i(u) = idg, ®i(U) ®idy,, u€EL

(4.62) B(u) = Adu ©id s 8idg, +idg;, ®0(W) @idge, uEL

(4.63) (26) P=P®idA3 ®id,,
except for the operator p - in

(8.64) A=d+sy+p-

(2) A in A is not the skew tensor product of derivatives d and 8. The latterisd + so=
= A - p -, see below.

(26) See below [4.7] for a study of P on *A.
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given by

(4.65) p - =idgy, ®p -

with

(4.66) {p - (@®p)}(R,...82) =

ae A*
& . ~
= Z 1Y o422 )0 (D, { 0 € D
i=1

Q.80 €L
Note that the product [*] on *A, =L ® Ag‘ is given by

u,velL
(4.67) [(ueS)*weDN]=I[uv]e(S 1),

S, Te*A,
{4.7]. Covariant derivatives. /A-connections

Appendix B applied to the DGL (*4A, A, [*]) yields a linear assignment, to
eachBe! Al,of his «covariant derivative»

(4.68) PE=p+[B"]

with square

(4.69) (DB =[FB~ -]

where the «curvature» of B. 8¢ 21\1, given by
(4.70) F8=pAB+ % (B~ B]

fulfills a «Bianchi identity »

4.71) DEFE =0,

Now we have a unique graded derivation (again denoted DBy of (* A, x) restrict-
ing to 28 on *M,, and to A on * [\, (in fact the latter is the sum of A and of
the unique graded derivation restricting to [B~ -] on */A| and to zero on */A()
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D8 is given by (27).
28, x ..xA)
k ii—lnk .
(4.72) =Y DA kx4, xDP A A, x x4,
i=1
"
A, €A

2 B thus defined on * A fulfills (29)
(4.73) (2B ={FB- ]
(4.74) 6wy - D8 — 28 -9(u)=[0(w)B~ -], ucl

(4.75)  iw)o DB + DB -i(u)=0(u) +[i(w)B* -] —id,\,®Adueid,,, uEL.

O*

Proof. (4.73) both sides are derivations, coinciding on * A, and *A,.

(4.74) (resp. (4.75)): both sides are graded derivations (resp. derivations)
vanishing on *AO and coinciding on */: as results by combining (4.27) with
(4.32) rewritten as (4.76) (resp. (4.29) with (4.38) rewritten as (4.77))

(4.76) B(u)o[B~-1—[B~-Jeob(u)=[0u)B~ ], Be lAl
4.77) i(Wyo[B~-]+[B~ -loi(u)=[i(w)B~ -], uel.
Let us call A-connections the elements of ! A fulfilling

(4.78) iwWA=uec’A;.

Let A be a A-connection: we have the commutation rules

(4.79) 0D — D46(u)=0, uel

(4.80) iWP4 + DAiw)=0(w), uel

showing that 24 preserves * A and h.* A. Moreover, in that case F4 belongs
to h2 A (in fact D preserves * Aforall A€ * A)).

(27) Generally, for A €A\, p even (resp. p odd), there is a unique derivation (resp. graded
derivation) of (* A, x) restricting to [4 ~ - ] on */A, and to zero on *A,,

(28) On has also the same formula with [B * - ] instead of 5.

(29) With the understanding that [4 = - ] is the extension described in footnote 7 above.
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Proof If Ae* Al. 0(u)A = 0, ensuring (4.79), which in turn implies QA A C
C* A. If in addition i(u)A = u (requiring that A € 1Al), we have [(i(wW)A - ]=
=[u~-J= id, « ®Aduoid hence (4.75) then reduces to (4.80), which
implies 24 h* A C h* A.

We end up this section with a discussion of the descent from * A, to * A,
by means of polynomials P € I (L).

¥

[4.8]. Let P be an Ad-equivariant polynomial of degree k on L: P€ I, (L). Setting
(4.81) P(rep)=P(r)e v, TEA¥, peEd*

in other terms

(4.81a) {PU}(QI, L, 82) = P{U(Ql, L)), Ue A*e Q... Qae.Sf

defines a linear map: P :'** [\, > * A, which preserves the ghost number and the
degree of form, commutes with the action of G:

(4.82) Por(s)y=r(s)oP, SEG
(hence maps * Ak into AO) and fulfills

(4.83) Pos=soP
(4.84) Pod=doP

(4.85) PoA=pAoP, u€l
(4.86) Pob(u)=6(u)oP, u€clL
(4.87) Poi(u)=i(u)oP, uel
and

(4.88) Po24=/A0P, AelA
(4.89) PolA~-1=0, AelA,.

Proof. (4.83) through (4.87) result at sight from (4.59) through (4.66) (remem-
ber that P- Adu =0 since P€ [ (L)). (4.88) follows from (4.85) and (4.89)
which immediately follows from the ’
LEMMA. Letrue l, feS(L), S, Te ﬂ\o we have;
(4.90) [(ueS)~(feN]=Adu(f)e(S*T)
indeed Po Ad u = O then implies Po [(u®¥)*-]=0.
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Proof of the Lemma. Denote the r.hs. of (4.91) by 8us(f ® T), we went to have
8,s=[(u®S5)~ ). This holds on A, by definition cf. (4.68), and ‘trivially on
AO. To prove that it holds everywhere, it thus suffice to check that 8us is a
derivation of the same type as [(u®S) " - | (30). We have indeed, for SE" A,
Te™A,

4.91) (6,(feD)x (f'eTH+(=D™(feDx 5us(f'® T =
=(Adu(fH)e(S*MNx(f'eT )+ (-1)"™(feTHAdu(f)e(S*T"))
=(Adu(f)~fe(ST*TH+(=D™(f-Adu(f)Ne(S*T-T)=
=(Adu(Nf +fAdu(fINS*T~T" =
=Adu(f-fHeS TT' =5, (feNx(f'eT). -

§5. THE BRS RELATIONS

We now exhibit the BRS relations as realized geometrically within the double
complex ( AT*, d, s) equipped with the product [“].

As we noticed in section 1, the set A of connection one-forms is contained in
A}, embedded in Al* as Allo = All o R.

On the other hand, let w be the «tautological form» on % (equal to the
identity map).

.1 w() =8, Qe .

Remembering that we identified % with A0 we set that w as given by (5.1)
appears as an element of Afl = A? ® L. Hence Al‘* accomodates both g and
w

ae Allo
(5.2)
we A?l.

We therefore may consider sqa, sw, dw, [a* w] and [w* w] in A’l"‘ C A**:
in this sense we then have the BRS relations

sa=—dw —[a* w]
(5.3) 1
sw=—; [w* w].

(3%) Cf.(B.8) in Appendix 8.
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Proof of these relations by definition (cf. [4.7]), sa € A** is given by
(5.4) (a)(Q)=p(Q)a=—dQ—[a-Q], Qe¥

(cf. (2.12)), whilst, also by definition (cf. (4.6a), (5.1)):

(5.5) (dw)() =d(w) =dQ, Qe

and (cf. (4.12a))

(5.6) [a~ w}(2) =[a - w®@)]= [a- L),

proving the first tine in (4.3). As for the second, we have, by definition of sw €
e AQ
1

(5.7 5w (82, §2)) = — (PP W () —p( P w () — ([, )] =
= — ((PR, — ()2, — 2y, 2,]) =
= (IR, 2,1 -2, - Q] —[2, 2]} =
=—[R,"&]
(we used (4.7) and (2.13)). On the other hand
(5.8) [w* W)y 2)) = [0 - ©(2)]— [w(®) ~ ()] =
=[Q,- Q1 -[2, - Q,1=2[8, - Q]
proving the second line in (5.3).
Remark. The «ghost» w arising in the physical literature is an anticommuting
«field» w(x) with values linear maps £ — L. Specifically, assuming the principal

bundle P trivial (so that % consists of smooth maps £2 : M — L) and choosing
a base e in L (with dual base €*in the dual L* of L), we have, for x € M

(5.9) wx) =) wixe,
ie.,
(5.9a) @), =) (Wix), De, Qe&

where w?(x)e £ * is the dual base of the «base» 4!5)‘18»e‘X of Q=€~M)sL
in the following sense

(5.10) (w(x),8,0e)=5878(x—»), x,yeM.
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In the physical literature, the operator s is defined by requiring
1

(5.1 sw"‘(x):—--z—j%:w"(x)ew“(x), xXEM
where the );ﬂ; are the structure constants of L:
(5.12) lepe,1=) fe,

o
these relations implying

1

(5.13) swix)=— —2- [w(x), wx)], XEM,

in the sense that one has, for QO, Ql €¥:

1
(5.13a) s0() (R 2)) = — (@@, ©OHD)
The relation between out w = id P and the above «ghost» is given as follows:
one has
(5.14) {w ()} (82) = w(§2)x) = Q(x), xEM, Qe.

Indeed, for R =feu, f&€ € (M), u € L, one has, from (5.92) and (5.10)

(5.15) w(x) (feu) = Z(w"‘(x))(fe ue,
= Z (w"‘(x))(ff(y)Sydy ® Eu"eﬁ)ea

= Zjdyf(y) Y ufsax—y)
a B

= Zf(x) ‘u®e = f(x)u

= (feu)x).

469

Furthermore, if one extends the correspondence (5.14) to elements ¢ € A°0 by
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requiring that
(5.16) {w(x)}(Ql, ces 82) = v, ..., 2)x)

one obtains (5.13) by equating the evaluation of both sides of (5.7) for x e M.

§6. COHOMOLOGY OF . WITH VALUES IN LOCAL FUNCTIONALS OF
CONNECTION ONE-FORMS

This section describes the cohomology which accomodates anomalies as ele-
ments of the first cohomology group. This cohomology arises from a construc-
tion analogous to the one described in section 4, but using a different represen-
tation space of the Lie algebra & of the gauge group % . We denote by I'°°(A)
the set of maps from A into the reals obtained as follows: ¥ € I''*(A) whenever

(6.1) v(a) =f ¥(a),
M

where Cis a smooth g-chain in M and ¥ is a map (31)
(6.2) acA-> AMM, R)

such that, foralle,a’ € A

(6.3) Supp (¥(a) —7(a")) CSupp (a —a'),

where Supp refers respectively to AZ(M, IR) in the left hand side and hAY(P, L)
in the right hand side (due to Ad-equivariance, the M-support is well defined
on hAY(P, L)). We further define a representation p. of % on 6'°(«) (and an
accompanying representation of £ ), by setting

(6.4) ipp W7 }a) = y(p (¥ NHa)

d
(6.5) P2y @ = —| y(ole " )a).
t=0

We now consider the cohomology of % with values in the representation space
T''°¢(A) (another example of the general procedure already encountered in section

(31) We call such maps v local functionals on A. Note that our definition of locality encom-
passes the case where 2 and a’, instead of being connection one-forms, are sections of a smooth
fiber bundle over M (not necessarily vectorial), the support on the left hand side staying un-
changed, whilst the support on the right hand side is now defined as the closure of the com-
plement of the set {x € M; a(x) = 2’ (x)}.
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4). On the space

[*=AZLTA)=T*Ad) ep*=0T"
(6.6)

[*=A%Z,TQ) =T Q) ® &°

direct sum of the I''*°(A)-valued alternate multilinear forms on %, we consider
the coboundary operator 81, given as follows: foryeTI'®

6.7 (B 7). 8 ) =

=Y (= Do) (R Ry ) +
i=0

+ ) DR, 0

0<i<j<a

o 00

One has 513 =0, ('*,8,) then defines a cohomology denoted H*( &, Te(a)).
According to Wess- Zumino compatibility anomalies are element of H!(.%, T'°°(a)).

§7. THE HOMOTOPY FORMULA

This section describes an algorithm (analogue to the usual Cartan Chern Weil
homotopy formula) which provides a means to classify anomalies [12].
With a € a and w considered as belonging to LA (cf. (5.2)) we set (32)

(7.1) A=a+w

and consider F and 2™ as defined in (4.71), (4.69) for the element 4 of
1 A t€[0,1]. We then have the limiting values

FM=F0=0

(7.2) 1
FlA=FA=F=da+ Y [a - a]

and the relation

(32) Aisthusa A-connection in the sense of [4.7].
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d
(7.3) QDAY= — gt
dr

Froof. The first line of (7.2) is obvious. The second follows from the BRS rela-
tions: indeed

1
(7.4) .?A=(d+s)(a+w)+—2-[a+w‘a+w]=

1
=F"+sw+;[w‘w]+sa+dw+[a‘w]

where we used the fact that [@ * w] = [w * @] in the GDL ( Al A [0D.
On the other hand we have

1

(7.5) FA=tha+ > 13[4~ A]

where (6.3)
d

(7.6) " FA=NA+[tA~A]l=2"A
t

From (4.53), (6.3), the Bianchi identity (4.52), and the fact that (* A, A, x) is
a GCDA, we have that

(7.7) DAUAx FAx FhAx .. . x F1) =
d
— _'g:tAxgtAx_”xgtA=
t

1 d
;d—(gtA\(.gtAX...XftA).
t

Applying P on the left and integrating w.r.t., ¢ from O to 1, we obtain, using
(4.88) and (7.2)

1
(7.8) kAfP(Ax.7‘Ax...x9’A)dt=P(F”x...\(F‘)
0

(i.e.)
(7.8a) AQ 1= p((Fayk)
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with

1
(7.9) Qz"“:kf PAx Fx...x Fhadr.
0

Writing Q%*-1 a5 sum of homogeneous elements for ghost number and degree
of form:

(7.10) Q¥-1= QO2k-1 4 gL2k-2 4 922k-3, | g2-10
relation (6.8a) yields

component 2k, 0 :dQ%*-10-¢

component 2k-—1,1:5Q%-1.04 gQ2%-21_¢

component 2k—2,2:s5Q%-21 4 4Q%-32-¢

component 0, 2k 1sQ02%k -1 = pa

We are particularly interested in the third relation which furnishes a means of
computing anomalies. Assume the principal bundle WP to be trivial, and let 0 : M ~
— P be a smooth section of P. Applying the pull back by g, which commutes
with d, we obtain choosing k so that 2k — 2 = d, the dimension of M, the follow-
ing vanishing d-form M

(7.12)  o*{(sQ*~21)(Qy, Q) + d{o*Q* 32, 2D} =0, £, €L

If we assume M compact without boundary (euclidean situation), Stokes theorem
then implies

(7.13) fa*{(sQZk-ll)(Qo, 2)}=0, Q,Q e
M
Let
(7.14) a(S2, a)=[o*Q2"‘2’1(Q)=
M

1
=f o*j Q12k-21(Q)d¢
M 0
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with
(7.15) Q,=Ax(FHYy*-D  g=g+w

We now show that (7.13), which also reads (cf. 4.84)

1
(7.13a) fo*/ P(sQ¥*~H(Q)dr =0,
M 0

in fact implies the «Wess-Zumino compatibility »
(7.16) o (QO,Ql,a)= 0, QO, Qle.?

in other words the fact that the cohomology class [a] of « is an element of the
cohomology required for anomalies:

(7.16a) [a)€ HY( &L, Te(A)).
For checking (7.16) we note that one has
(7.17) Q1= wx F+4 (k—1)t(t— Da~ w]xa x (Fexk-2)
this stemming from

A% = w,

(FAHL = (¢t — Dfa = w]
(7.18)

(FANOI= Fl=fF° 4 % t(t —1)[a " al.
From this follows
(7.19) Q24 Q)= QxFU+ (k- Dt(t— Dlax Q) xa x (Fo<k-2

_ Qt2k—2,l(ﬂ, a)
hence
(7.20) p(QHQH-21(Q) =
d .
=QX-24([Q', Q],a) + = |A=OQ,2"‘“(Q,p(e‘m)a).

Therefore
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(7.2D {(sQ*-2(Q, Q) = 0% 21([Q, Q,],2) +
d Y
—| @M@ e )~
d\ o

— Q219 ple Ny =—5.02 (K, a).
Relation (7.16) then results from the fact that 61, commutes with the operation
fM o* fol dtP, as follows from linearity.
[7.2]. Remark. From (6.8a) it follows that AQ2¥~!is a basic form:
(7.22) 0AQH 1 =iu)p®*1=0, wu€el.

This raises the question of whether this also holds for Q”"Z’I, which would
yield an intrinsic d-form ¢’ on the base such that Q2¥~21 = g*q’ (cf. 2.7) without
recourse to a section o* of P (so without the assumption that the latter is trivial).
However this does not arise (33), the form QZ" -2lyg by definition Ad-equivariant

(7.23) 0(u)Q*-21=, uel,
however Q%¥~21 is nor horizontal. Indeed, we conclude from (7.17), taking
account of
iWw=2>0
i(uya=ul
(7.24) 1

i(W)F"=i(u) tF“+;t(t——1)[a‘a] =

=t(t — Dful - a]

that one has

i(u)QZk—Z,l'
(7.25) —_— =
tt—1)

=(—wx[ul*a]l+ (k- Dul xw]lxa+ (k- Dla~ wlxa)x (FH<&-D 4
+ (k=20 wx F® + (k- Dt(t - Dla~ wlx[ul*a]x (Fox&-D

In particular, for k = 2

(33) No more that in the case of the Chern-Simons form TP. What we have here is an analo-
gy to the Chern-Simons situation, with the replacement a > A4 (cf. [9]).
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(7.26) i(u)Q}’““: —wx [ul xal+[ul ~wlxa+a~ wlxa=
=[ul* (wxa)] —2wx{ul*al +[a* w]xw.

Upon application of P the first term r.h.s. vanishes (cf. (4.90), but the two follow-
ing terms persist, yielding a non vanishing result.

It is easy to find a substitute for Q%1 whose terms Q%2¥~17% are basic,
horizontal, replacing the family tA4 by the family t4 + (1 — ¢t)a, where @ is a
fixed backgound connection on P, which then need not be assumed to be trivial
[8]. The algebraic constructions of this paper have to be generalized as will be
done in a forthcoming article.

APPENDIX A. GRADED DIFFERENTIAL ALGEBRAS

[4.1]. DEFINITIONS. (i) A GDA (graded differential algebra) is a graded real
vector space A = nefﬂm A" equipped with a bilinear product Ax A—A: and a linear

operator d : A — A (the derivative), with the properties

(A.1) AP AT CAPTY, p.q€N

(A.2) dAPCAP*l peN

(A.3) d@b)=Da-b+(—1da-b, acA beEA? peN
(A.4) d*=0.

(il) A GCDA (graded-commutative differential algebra) (34) is a GDA A
with an associated and «graded-commutative» product:

(A.5) a-(bc)=(a-b)c, a,b,ceA
(A.6) b-a=(—1""%-b, acA?, beA!, p,geN.

(iii) A DGL (34) (differential graded Lie algebra) is a GDA with product (2)
a «graded Lie bracket»:

(A7) b-a=—(—1DP%a-b, a€EA?, beAf?
(A.8) =1Pa-(b-c)+(—=1¥Pb-(cra)+(—=1Y9%-(a-b) = 0;

ac AP, beA!, ceX.

(34) In concrete examples as those encountered in the text, it is natural to denote the
product of a GCDA by a wedge-like symbol, and that of a DGL by a bracket-like symbol.
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(iv) Let L be a Lie algebra and o be a GDA. An action of L on is a pair
(0, i) of linear maps from L to the linear operators of o with the properties (35)

6(u)AP C AP, reN

(A.9)
8(u)(a-b) =0(w)a-b+a-8(w)b, a,b€EA, u€cl
WA CAP™L peN, iw],=0, wuel
(A.10)
i(ufa-b)=i(wa-b+(-1Pa-i(wb, a€EAP, bEX
and
(A1D iw?=0, wuel
(A.12) 0([u, v]) = 0(w)8(v) — 8(V)O(w), wu,vEL
(A.13) 8(w)i() —i(V)8) =i([u,v]), wveL
(A.14) 0(u) =i(u)d + di(u), uel

Note that these properties imply
(A.15) 0(u)d = d8(u) (= di(w)d), uel
(A.16) 0(u)i(u)0(u), ucl.

(In fact (A.12) follows from (A.14) and the fact that d?=0).

[A.2]. Skew tensor products of GDAs.
Let A= © AP d,-)and ¥ =( @ W¥* § o) be two real (36) GDAs. Their
PEIN acEIN

skew product as graded algebras is the usual tensor product of vector spaces
(A17) MN=AeV¥

equipped with the bilinear skew product determined by

(35) (A.9) states the fact that 8(u), u € L, is a 0-grade derivation of a; and (A.10) that
i(u),ue L,isa — 1-graded derivation of a.

(3¢) Or for that matter complex.
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acd, beA?
(A.18) @ep)A((b oY) =(—1a-b)e(poy),

peV¥® yYyev
and the grading
(A.19) n" = APy,

We furthermore consider the following operators on I1:

(A.20) D=d+o
where (37)

(A.2]) d=del,
(A.22) o=(—1)Yo6

where (— 1)? denotes the grading in relation of A
id on A%
(A.23) (—1P=
—id on A%+l peEN

and ® r.h.s. of (A.21), (A.22) denotes a standard tensor product of linear opera-
tors (39)

(A.24) (4 ®B)(a @ {) = (4a) ® (BY), acdA, yev.

We recall that these definitions imply the following facts:
(i) With the product (A.18) and the grading (A.19) II is a graded algebra,
jieIM"-MmcCc”*™ n,meNN.
(ii) d and o are graded derivations of Il of grade 1 (38). Moreover d and o
anticommute:

(37) Using the same symbol for d acting on « and d = d ®1, acting on II should cause no
confusion.

(3%) A linear operator L on Il is of grade r, r € N whenever LII"C LII"*" ne N (IT¥ =
= 0, k<O0). It is a graded derivation wherever L(a-f)=(La) -+ (— 1Yo - LB, a€11?,
gell.

(39 In fact, (A.21) and (A.22) could be written d=d ®1y, 6=1_®35, with ® a graded
tensor product of operators.



A DIFFERENTIAL GEOMETRIC SETTING FOR BRS TRANSFORMATIONS, ETC. 479

(A.25) do +0d=0.
Consequently, D is a graded derivation of Il of grade — 1 and vanishing square
(A.26) D?=0,

making (I, §, - ) a GDA.
(iii) If (A, d,-)and (¥, §,0) are GCDA, (II, D, A) isa GCDA.
Gv) If (A, d, -)is a DGL and (¥, 8, o )is a GCDA, (I1, D, A) is a DGL.

Proof. (i): obvious.
(i) We have, fora€ AP, be A, pc ¥, Yy € ¥#

(A27) d{aep)Ab oY) }=(-1)d{(a-b) & (po Y)} =
=(D"da b+ (-1Pa-db)e(wey)=
= (—1)***(daep)A(b 8 V¥) + (- 1)9*P* @+ Dgep)A(dbe ) =
={d@e A eVY)+(-1)P"*aepAd(be )

(A.28) o{l@aep)Ab @)} = (~1)*0o{(a-b) 8 (po ¥)} =
=(-1DM*P g -b)e(opoy + (-1)pooy) =
= (= 1)2*P*3+ (g g gp) A(b ® Y) +(— 1)+ PHI+eted(g o PIA(b @ V)
={o@aep)jab oY)+ (-1 *aep)rcb e )

(A.29) do(aey) = (—1Pd(a ®bp) =(—1)P(da edy) =
=(-1)P*P+tlg(das )= —od@aey)

(iii) We have, fora, b, v, Y asaboveandcec€A”, 8 € ¥”

(A.30) (@aep)A{beyY)A(ced)} = (-1 (aop)A{(b-c) (Y ob)} =
= (1D e@* DG b -c)e(poyob) =
= (1@ nrrer B by e(po Y} Alc 86) =
= (- 1)**%{@ep) Ab e ¥)}A(c ©0)

(A31) (b oY)A@ey)=(—1P(b-a) @ (Y op) =
=(-1DPTPrebg-bye(poy) =
= (-DErPPr D@ ep)AD @ ¥)

(iv) Let a, b, c, v, ¥, 6, be as above. For the commutation ofa®ypand b ® Y,
we have the same computation asin (A.31), with the alteration that, now, b -a =
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= —(— )P4 - b, whence an overal sign, leading to (A.7). We check (A.8): we
have
(A32) (= DE+ITNG @ ) A{(b & Y)Ac ® )} =
= (= DPFACHENE (G o)b - )@ (Y 0 0) =
=(— 1)(p+ )(r+ ¥+ pr+ a(q+r)(a “bc)e(poPol)=
= (= 1P IP(— PTG b ) @ (po Yo f),

Since ag + fr + yp is invariant under circular permutation, the graded Jacobi
identity for Il is a consequence of that for a, given that (— 1)*Y¢ o { o 8 is inva-
riant under circular permutations, a straightforward consequence of the GCDA
nature of W.

Remark. (i) The proof of (i) applies to the more general situation where d and
& are graded derivation of a, resp. ¥, of odd grade p, resp. q. Defining d and ¢
on the skew product II as in (A.21), (A.22) the latter are still mutually anticom-
muting derivations of II, of respective grades p and g.

Indeed, in the proofs (A.27), (A.28), (A.29), no use is made of the fact that
d? =0, 82 = 0, and the grade of d and 8 enters only through its parity.

APPENDIX B. «<COVARIANT DERIVATIVES» IN DGLs
PROPOSITION. Let (L= & L™ d,[-) be a DGL. Forac LW, Foe LD and
the map D® : L — L are defined as follows:

1
(B.1) F°‘=da+5[a‘a]
(B.2) DN =dXA+ [a - AL

We then have that
(i) D%is a graded derivation of L

(B.3) DA~ pl=[(D*N) ~p]+ (— D)'[A -~ D°p], AeL™, pel,
whose square is given by
(B.4) DY*N=[F*-7Al, A€l
(i) We have the Bianchi identity
(B.5) DoF*=0.

(iii) The map [o -+ ):
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B.7 AEL->[a-ANEL

is a graded derivation of L; in fact D% is the sum of d and [« - - ] (generally for
a€ LWP [« - - ]is a derivation of order p in the sense that

(B.8) e~ ~ull={la-A]"u]+ DA -[e-u)], AEIP, pel@).
Proof. (i) dis by definition a graded derivation of ([L, - ]): thus the first assertion

in (i) is a consequence of (iii), which in turn foliows from the following special
case of the graded Jacobi identity: for A€ L® ue L@, ac [™

(B.9) (D™~ A-pll + (=D - (p-all + (= DPp - [a - A])

with the commutation properties

(B.10) [h-al=—(=1D"a-u]

(B.11) (e[~ N]=— (=1 Pla-A] g

implying

(B.12) fe- (A -l =l A - p] + (DA~ [a-pll, A€LP.

We now check (A.4): we have, takingnown =1
(B.13) DY =ddA+a- AN +a@d\+[a-7A]) =
= [da ~ A] + [ ~ [ ~ A]]

however, using (A.10)
1
(B.14) fa - {oc~A]] = Y foo~[a~A]} +[[a-a]~A] —[a-[ae-A]] =

1
= — [[e¢ -~ @] ~ A].
2

(ii) We have

1 1
(B.15) Def*=dF*+a-F*=d da+;[a-a] + o da+5[a‘a]

1
[dcx*a]—;[a*da]—[a‘da]:O.

1
)
where [da ~ a] = — [a - da], due to the commutasion rule, and [« - [@ - «}] = 0,
to the graded Jacobi identity.
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(iv) Immediate from (B .4) and (B.5). =
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